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What is a graph?

“nodes” or “vertices”

“edges"

a.k.a. a network:

2
.75.25

“edge weights” or “weights” 



Graphs all over

Social Networks



Graphs all over

Schizophrenia protein-protein 
interaction network 

(Ganapathiraju et al.)



Graphs all over

Road Networks



Graphs all over

The internet



Power of abstraction

Fastest way to drive from 
Berkeley to San Mateo?

Shortest path between 
two nodes.



Power of abstraction

How close am I to Barack Obama? Shortest path between 
two nodes.



Power of abstraction

How many routers see my packets 
when I google myself?

Shortest path between 
two nodes. (sort of)



Graphs in theoretical Computer Science 

• Algorithmic Perspective

(1) Can we design fast algorithms for general graph problems?

(2) Why are some graph problems easy and others hard?

• Mathematician’s Perspective

(3) Graph structure/geometry

Shortest path, minimum cut, largest clique, clustering, … 

vs.



Some examples (from my research)

• Clustering algorithms
• Arbitrary graphs

• Specialized settings (stochastic block models)

• Computing the minimum cut when the graph isn’t fully known

• Showing algorithms fail to find largest clique in random graphs

• Spectral (“geometric”) properties of random graphs

(1) Can we design algorithms?

(2) Why are some graph problems hard?

(3) Understanding graph structure



Graph clustering
How should the nodes be “grouped”?



Graph clustering
How should the nodes be “grouped”?

Protein-protein interaction network:

“[Clustering] can suggest possible functions for members 
of the cluster which were previously uncharacterized.”
From Knowledge Discovery in Bioinformatics: Techniques, 
Methods and Application



Graph clustering

how to 
cluster?

applying 
clustering



Graph clustering
How should the nodes be “grouped”?

What are the “social circles” or 
“social groups”?

Social Networks:



Graph clustering

how to 
cluster?

applying clustering



Graph clustering



Graph clustering



Graph clustering



Outline

• Formalizing graph clustering?
pros & cons of some popular formulations

• The “Spectral Embedding”
from graphs to geometry

• Clustering Graphs with the spectral embedding
graphs → geometry → k-means++



Formalizing graph clustering
What is it we want, exactly?



What is it we want, exactly?
Best partition of graph into 𝑘 pieces.

𝑘 = 3



What is it we want, exactly?

Attempt 1: cut as few edges as possible?

Best partition of graph into 𝑘 pieces.

𝑘 = 3

minimize    (# edges cut)

“objective function”



What is it we want, exactly?

Attempt 1: cut as few edges as possible?

Best partition of graph into 𝑘 pieces.

𝑘 = 3

minimize    (# edges cut)



What is it we want, exactly?

Attempt 2: the “sparsest” cut?

Best partition of graph into 𝑘 pieces.

minimize    
(# edges cut)

# edges in C1 ⋅ # edges in C2 ⋅(#edges in C3)

cost = ∞



What is it we want, exactly?

Attempt 2: the “sparsest” cut?

Best partition of graph into 𝑘 pieces.

minimize    
(# edges cut)

# edges in C1 ⋅ # edges in C2 ⋅(#edges in C3)



What is it we want, exactly?

Attempt 2: the “sparsest” cut?

Best partition of graph into 𝑘 pieces.

minimize    
(# edges cut)

# edges in C1 ⋅ # edges in C2 ⋅(#edges in C3)

1000

1000

cost =
.25+ .25+1

(2000+ .75+6) ×4×3
≈ 10−5
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What is it we want, exactly?

Attempt 2: the “sparsest” cut?

Best partition of graph into 𝑘 pieces.

minimize    
(# edges cut)

# edges in C1 ⋅ # edges in C2 ⋅(#edges in C3)

1000

1000

cost =
.25+ .25

1000×1000×14.75
≈ 10−8

cost =
.25+ .25+1

(2000+ .75+6) ×4×3
≈ 10−5

.25

.25.25

.25

.25



What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize    # edges cut + (# non − edges not cut)



What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize    # edges cut + (# non − edges not cut)

cost = 2 + 2 = 4



What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize    # edges cut + (# non − edges not cut)



What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize    # edges cut + (# non − edges not cut)

cost = 5 + 2 = 7



What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize    # edges cut + (# non − edges not cut)

cost = 5 + 2 = 7



What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize    # edges cut + (# non − edges not cut)

cost = 3 + 4 = 7

cost = 5 + 2 = 7



Theory vs. Practice

Theory:

maybe under assumptions about the graph

Want to prove general guarantees. Requires optimizing a fixed objective.

Practice:
Want a good clustering. Mixture of theory & tweaking (pre- and post-processing). 



Spectral Embedding + k-means

Our strategy:

spectral 
embedding

k-means 
clustering



From graphs to geometry
The Spectral Embedding



How to “see” the clusters?

1 -> 2, 3, 5
2 -> 1, 3
3 -> 1, 2, 4, 5
4 -> 3, 5
5 -> 1, 3, 4, 6
6 -> 5, 7, 9
7 -> 6, 8
8 -> 7, 9
9 -> 6, 8
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The Spectral Embedding



Spectral Embedding in action

𝑣3

𝑣2

2D spectral embedding of grid



Spectral Embedding in action

𝑣3

𝑣2

2D spectral embedding of broken grid

15 16

21 22



Spectral Embedding in action

𝑣3

𝑣2

2D spectral embedding of broken grid

15 16

21 22



Spectral Embedding in action

𝑣2
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𝑣3

3D spectral embedding of broken grid

𝑣4

11 & 12



k-means clustering



Geometric Clustering: k-means

Choose a set 𝐶 of 𝑘 “centers” that minimize sum of squared distances.

Given: set 𝑆 of 𝑛 points in space (e.g. ℝ𝑛)

minimize
𝐶

𝐶 =𝑘

෍

𝑖∈𝑆

min
𝑐∈𝐶

𝑑 𝑖, 𝑐 2



Geometric Clustering: k-means

Choose a set 𝐶 of 𝑘 “centers” that minimize sum of squared distances.

Given: set 𝑆 of 𝑛 points in space (e.g. ℝ𝑛)

minimize
𝐶

𝐶 =𝑘

෍

𝑖∈𝑆

min
𝑐∈𝐶

𝑑 𝑖, 𝑐 2



Geometric Clustering: k-means

Choose a set 𝐶 of 𝑘 “centers” that minimize sum of squared distances.

Given: set 𝑆 of 𝑛 points in space (e.g. ℝ𝑛)

minimize
𝐶

𝐶 =𝑘

෍

𝑖∈𝑆

min
𝑐∈𝐶

𝑑 𝑖, 𝑐 2

Clusters determined by centers.



k-means



Can’t always get what you want…

Finding the optimal set of centers is NP-hard.

If there is an algorithm that exactly solves k-means efficiently, then there is an 
algorithm that solves many “hard” problems efficiently (too efficiently).

Hard Problem

k-means problem
(even for 𝑘 = 2)



Practice, and theory

There are k-means algorithms that work well in practice.

If we know how some points should be clustered [Ailon-Bhattacharya-Jaiswal-Kumar ‘17]

“the 𝑘-means algorithm” [Lloyd ‘57] 
k-means++ [Ostrovsky-Rabani-Schulman-Swamy ’06, Arthur-Vassilvitskii ‘07]

There are k-means algorithms that work ok in theory.

There are k-means algorithms that work well in theory if we compromise.

If we use 10𝑘 centers instead of 𝑘 centers [Makarychev-Makarychev-Sviridenko-Ward ‘15]

If 𝑘 is small [Kumar-Subharwal-Sen ‘04]

Can get a 2.611-approximation [Byrka-Pensyl-Rybicki-Srinivasan-Trinh ‘15]



Algorithm: k-means++

1) Initialize 𝐶 with a random point

2) While there are < 𝑘 centers
1) Add 𝑥 to 𝐶 with probability proportional to min

𝑐∈𝐶
𝑑 𝑥, 𝑐 2
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Algorithm: k-means++

1) Initialize 𝐶 with a random point

2) While there are < 𝑘 centers
1) Add 𝑥 to 𝐶 with probability proportional to min

𝑐∈𝐶
𝑑 𝑥, 𝑐 2



Algorithm: k-means++

1) Initialize 𝐶 with a random point

2) While there are < 𝑘 centers
1) Add 𝑥 to 𝐶 with probability proportional to min

𝑐∈𝐶
𝑑 𝑥, 𝑐 2

Proven to perform well under 
clusterability assumptions 
[Agarwal-Jaiswal-Pal ‘15]



Lloyd’s Algorithm (a.k.a. 𝑘-means)

1) Initialize 𝐶 (with 𝑘-means++ centroids)

2) Add 𝑥 to cluster of closest point in 𝐶

3) Find the “centroid” 𝑐∗ of each cluster, update 𝐶′

4) Repeat until 𝐶 stops changing

𝑐∗ 𝑐∗

𝑐∗



Lloyd’s Algorithm (a.k.a. 𝑘-means)

1) Initialize 𝐶 (with 𝑘-means++ centroids)

2) Add 𝑥 to cluster of closest point in 𝐶

3) Find the “centroid” 𝑐∗ of each cluster, update 𝐶′

4) Repeat until 𝐶 stops changing

𝑐∗ 𝑐∗
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Lloyd’s Algorithm (a.k.a. 𝑘-means)

1) Initialize 𝐶 (with 𝑘-means++ centroids)

2) Add 𝑥 to cluster of closest point in 𝐶

3) Find the “centroid” 𝑐∗ of each cluster, update 𝐶′

4) Repeat until 𝐶 stops changing



Putting things together



“Spectral Clustering”

spectral 
embedding

k-means 
clustering

Laplacian matrix eigenvectors







Spectral & 𝑘-means++ in action

15 16

21 22



Spectral & 𝑘-means++ in action

𝑣3

𝑣2

2D spectral embedding + 4-means

15 16

21 22



Spectral & 𝑘-means++ in action

𝑣3

𝑣2

2D spectral embedding + 4-means

15 16

21 22



Spectral & 𝑘-means++ in action
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Spectral & 𝑘-means++ in action

𝑣3

𝑣2

2D spectral embedding + 3-means
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Concluding

• Graph clustering is ubiquitous

• Important to formulate correct objective
Theory vs. Practice

• The Spectral Embedding
Is awesome! Stay tuned…

• Practice ⟺ Theory
Case study: 𝑘-means



Thanks!


