
Graph Clustering Algorithms

Tselil Schramm

(Simons Institute)

9/28/2017 @ GraphXD

What is a graph?

“nodes” or “vertices”

“edges"

a.k.a. a network:

2
.75.25

“edge weights” or “weights”

Graphs all over

Social Networks

Graphs all over

Schizophrenia protein-protein
interaction network

(Ganapathiraju et al.)

Graphs all over

Road Networks

Graphs all over

The internet

Power of abstraction

Fastest way to drive from
Berkeley to San Mateo?

Shortest path between
two nodes.

Power of abstraction

How close am I to Barack Obama? Shortest path between
two nodes.

Power of abstraction

How many routers see my packets
when I google myself?

Shortest path between
two nodes. (sort of)

Graphs in theoretical Computer Science

• Algorithmic Perspective

(1) Can we design fast algorithms for general graph problems?

(2) Why are some graph problems easy and others hard?

• Mathematician’s Perspective

(3) Graph structure/geometry

Shortest path, minimum cut, largest clique, clustering, …

vs.

Some examples (from my research)

• Clustering algorithms
• Arbitrary graphs

• Specialized settings (stochastic block models)

• Computing the minimum cut when the graph isn’t fully known

• Showing algorithms fail to find largest clique in random graphs

• Spectral (“geometric”) properties of random graphs

(1) Can we design algorithms?

(2) Why are some graph problems hard?

(3) Understanding graph structure

Graph clustering
How should the nodes be “grouped”?

Graph clustering
How should the nodes be “grouped”?

Protein-protein interaction network:

“[Clustering] can suggest possible functions for members
of the cluster which were previously uncharacterized.”
From Knowledge Discovery in Bioinformatics: Techniques,
Methods and Application

Graph clustering

how to
cluster?

applying
clustering

Graph clustering
How should the nodes be “grouped”?

What are the “social circles” or
“social groups”?

Social Networks:

Graph clustering

how to
cluster?

applying clustering

Graph clustering

Graph clustering

Graph clustering

Outline

• Formalizing graph clustering?
pros & cons of some popular formulations

• The “Spectral Embedding”
from graphs to geometry

• Clustering Graphs with the spectral embedding
graphs → geometry → k-means++

Formalizing graph clustering
What is it we want, exactly?

What is it we want, exactly?
Best partition of graph into 𝑘 pieces.

𝑘 = 3

What is it we want, exactly?

Attempt 1: cut as few edges as possible?

Best partition of graph into 𝑘 pieces.

𝑘 = 3

minimize (# edges cut)

“objective function”

What is it we want, exactly?

Attempt 1: cut as few edges as possible?

Best partition of graph into 𝑘 pieces.

𝑘 = 3

minimize (# edges cut)

What is it we want, exactly?

Attempt 2: the “sparsest” cut?

Best partition of graph into 𝑘 pieces.

minimize
(# edges cut)

edges in C1 ⋅ # edges in C2 ⋅(#edges in C3)

cost = ∞

What is it we want, exactly?

Attempt 2: the “sparsest” cut?

Best partition of graph into 𝑘 pieces.

minimize
(# edges cut)

edges in C1 ⋅ # edges in C2 ⋅(#edges in C3)

What is it we want, exactly?

Attempt 2: the “sparsest” cut?

Best partition of graph into 𝑘 pieces.

minimize
(# edges cut)

edges in C1 ⋅ # edges in C2 ⋅(#edges in C3)

1000

1000

cost =
.25+ .25+1

(2000+ .75+6) ×4×3
≈ 10−5

.25

.25.25

.25

.25

What is it we want, exactly?

Attempt 2: the “sparsest” cut?

Best partition of graph into 𝑘 pieces.

minimize
(# edges cut)

edges in C1 ⋅ # edges in C2 ⋅(#edges in C3)

1000

1000

cost =
.25+ .25

1000×1000×14.75
≈ 10−8

cost =
.25+ .25+1

(2000+ .75+6) ×4×3
≈ 10−5

.25

.25.25

.25

.25

What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize # edges cut + (# non − edges not cut)

What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize # edges cut + (# non − edges not cut)

cost = 2 + 2 = 4

What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize # edges cut + (# non − edges not cut)

What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize # edges cut + (# non − edges not cut)

cost = 5 + 2 = 7

What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize # edges cut + (# non − edges not cut)

cost = 5 + 2 = 7

What is it we want, exactly?

Attempt 3: similar together, different apart?

Best partition of graph into 𝑘 pieces.

minimize # edges cut + (# non − edges not cut)

cost = 3 + 4 = 7

cost = 5 + 2 = 7

Theory vs. Practice

Theory:

maybe under assumptions about the graph

Want to prove general guarantees. Requires optimizing a fixed objective.

Practice:
Want a good clustering. Mixture of theory & tweaking (pre- and post-processing).

Spectral Embedding + k-means

Our strategy:

spectral
embedding

k-means
clustering

From graphs to geometry
The Spectral Embedding

How to “see” the clusters?

1 -> 2, 3, 5
2 -> 1, 3
3 -> 1, 2, 4, 5
4 -> 3, 5
5 -> 1, 3, 4, 6
6 -> 5, 7, 9
7 -> 6, 8
8 -> 7, 9
9 -> 6, 8

2
1

3

4

5

6

7

8

9

2
1

3

4

5

6

7

89

The Spectral Embedding

Spectral Embedding in action

𝑣3

𝑣2

2D spectral embedding of grid

Spectral Embedding in action

𝑣3

𝑣2

2D spectral embedding of broken grid

15 16

21 22

Spectral Embedding in action

𝑣3

𝑣2

2D spectral embedding of broken grid

15 16

21 22

Spectral Embedding in action

𝑣2

12

3

4 5

6

7

8

9

10

11
12

𝑣3

3D spectral embedding of broken grid

𝑣4

11 & 12

k-means clustering

Geometric Clustering: k-means

Choose a set 𝐶 of 𝑘 “centers” that minimize sum of squared distances.

Given: set 𝑆 of 𝑛 points in space (e.g. ℝ𝑛)

minimize
𝐶

𝐶 =𝑘

෍

𝑖∈𝑆

min
𝑐∈𝐶

𝑑 𝑖, 𝑐 2

Geometric Clustering: k-means

Choose a set 𝐶 of 𝑘 “centers” that minimize sum of squared distances.

Given: set 𝑆 of 𝑛 points in space (e.g. ℝ𝑛)

minimize
𝐶

𝐶 =𝑘

෍

𝑖∈𝑆

min
𝑐∈𝐶

𝑑 𝑖, 𝑐 2

Geometric Clustering: k-means

Choose a set 𝐶 of 𝑘 “centers” that minimize sum of squared distances.

Given: set 𝑆 of 𝑛 points in space (e.g. ℝ𝑛)

minimize
𝐶

𝐶 =𝑘

෍

𝑖∈𝑆

min
𝑐∈𝐶

𝑑 𝑖, 𝑐 2

Clusters determined by centers.

k-means

Can’t always get what you want…

Finding the optimal set of centers is NP-hard.

If there is an algorithm that exactly solves k-means efficiently, then there is an
algorithm that solves many “hard” problems efficiently (too efficiently).

Hard Problem

k-means problem
(even for 𝑘 = 2)

Practice, and theory

There are k-means algorithms that work well in practice.

If we know how some points should be clustered [Ailon-Bhattacharya-Jaiswal-Kumar ‘17]

“the 𝑘-means algorithm” [Lloyd ‘57]
k-means++ [Ostrovsky-Rabani-Schulman-Swamy ’06, Arthur-Vassilvitskii ‘07]

There are k-means algorithms that work ok in theory.

There are k-means algorithms that work well in theory if we compromise.

If we use 10𝑘 centers instead of 𝑘 centers [Makarychev-Makarychev-Sviridenko-Ward ‘15]

If 𝑘 is small [Kumar-Subharwal-Sen ‘04]

Can get a 2.611-approximation [Byrka-Pensyl-Rybicki-Srinivasan-Trinh ‘15]

Algorithm: k-means++

1) Initialize 𝐶 with a random point

2) While there are < 𝑘 centers
1) Add 𝑥 to 𝐶 with probability proportional to min

𝑐∈𝐶
𝑑 𝑥, 𝑐 2

10

5

3

Algorithm: k-means++

1) Initialize 𝐶 with a random point

2) While there are < 𝑘 centers
1) Add 𝑥 to 𝐶 with probability proportional to min

𝑐∈𝐶
𝑑 𝑥, 𝑐 2

Algorithm: k-means++

1) Initialize 𝐶 with a random point

2) While there are < 𝑘 centers
1) Add 𝑥 to 𝐶 with probability proportional to min

𝑐∈𝐶
𝑑 𝑥, 𝑐 2

Proven to perform well under
clusterability assumptions
[Agarwal-Jaiswal-Pal ‘15]

Lloyd’s Algorithm (a.k.a. 𝑘-means)

1) Initialize 𝐶 (with 𝑘-means++ centroids)

2) Add 𝑥 to cluster of closest point in 𝐶

3) Find the “centroid” 𝑐∗ of each cluster, update 𝐶′

4) Repeat until 𝐶 stops changing

𝑐∗ 𝑐∗

𝑐∗

Lloyd’s Algorithm (a.k.a. 𝑘-means)

1) Initialize 𝐶 (with 𝑘-means++ centroids)

2) Add 𝑥 to cluster of closest point in 𝐶

3) Find the “centroid” 𝑐∗ of each cluster, update 𝐶′

4) Repeat until 𝐶 stops changing

𝑐∗ 𝑐∗

𝑐∗

Lloyd’s Algorithm (a.k.a. 𝑘-means)

1) Initialize 𝐶 (with 𝑘-means++ centroids)

2) Add 𝑥 to cluster of closest point in 𝐶

3) Find the “centroid” 𝑐∗ of each cluster, update 𝐶′

4) Repeat until 𝐶 stops changing

Putting things together

“Spectral Clustering”

spectral
embedding

k-means
clustering

Laplacian matrix eigenvectors

Spectral & 𝑘-means++ in action

15 16

21 22

Spectral & 𝑘-means++ in action

𝑣3

𝑣2

2D spectral embedding + 4-means

15 16

21 22

Spectral & 𝑘-means++ in action

𝑣3

𝑣2

2D spectral embedding + 4-means

15 16

21 22

Spectral & 𝑘-means++ in action

12

3

4 5

6

7

8

9

10

11
12

Spectral & 𝑘-means++ in action

𝑣3

𝑣2

2D spectral embedding + 3-means

12

3

4 5

6

7

8

9

10

11
12

Concluding

• Graph clustering is ubiquitous

• Important to formulate correct objective
Theory vs. Practice

• The Spectral Embedding
Is awesome! Stay tuned…

• Practice ⟺ Theory
Case study: 𝑘-means

Thanks!

