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Goals

1. Explain spectral sparsification, a form of lossy 
compression of graphs.

2. Introduce physical and geometric ways of
thinking about graphs.



Graphs

G G=(V,E,w) undirected
|V| = n

w: E R+



Sparsification

Approximate any graph G by a sparse graph 
H.

G H



Sparsification

Approximate any graph G by a sparse graph 
H.

–H is faster to compute with than G

–Nontrivial statement about G

G H
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Some properties of interest

Sizes of cuts “bottlenecks”

Clusters “communities”

Distances (shortest paths)

Random walks

Single / multicommodity flows

Electrical flows + other physical processes

Coloring

Hamiltonian / Eulerian cycle

Subgraph counts e.g. triangles
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H approximates G if 

for every subset

sum of weights of edges leaving S is preserved

Cut Approximation [Benczur-Karger’96]

S S



Example: The Complete Graph

G=Kn H = random d-regular

|EG| = O(n2) |EH| = O(dn)
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Example: The Complete Graph

G=Kn H = random d-regular x (n/d)

|EG| = O(n2) |EH| = O(dn)

whp



H approximates G if 

for every subset

sum of weights of edges leaving S is preserved

Cut Approximation [Benczur-Karger’96]
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[Benczur-Karger’96]: For every G can quickly 
find H with O(nlogn/2) edges. 
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H approximates G if 

for every subset

sum of weights of edges leaving S is preserved

Cut Approximation [Benczur-Karger’96]

S S

[Benczur-Karger’96]: For every G can quickly 
find H with O(nlogn/2) edges. 

𝐺 and 𝐻 have the same 
‘bottlenecks’.

Going below O(n) would 
disconnect the graph.



Physical Approximation 
[Spielman-Teng’04]

(i.e., spectral approximation)



Resistor Network Metaphor



Resistor Network Metaphor

edge = 1Ω resistor
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Resistor Network Metaphor

energy ℰ𝐺 𝑥 = σ𝑖𝑗∈𝐸 𝑥𝑖 − 𝑥𝑗
2

= 12 + 12 + 22 + 52 + 12 + 22= 36
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Physical Approximation [ST’04]

Definition. 𝐻 = (𝑉, 𝐹, 𝑢) is a 𝜅 −approximation 
of 𝐺 = 𝑉, 𝐸, 𝑤 if for all potentials 𝑥: 𝑉 → ℝ :

ℰ𝐻 𝑥 ≤ ℰ𝐺 𝑥 ≤ 𝜅 ⋅ ℰ𝐻(𝑥)

“Electrically Equivalent”
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Definition. 𝐻 = (𝑉, 𝐹, 𝑢) is a 𝜅 −approximation 
of 𝐺 = 𝑉, 𝐸, 𝑤 if for all potentials 𝑥: 𝑉 → ℝ :
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Properties of the Laplacian

𝐿𝐺 = 

𝑖𝑗∈𝐸

𝑤𝑖𝑗 𝛿𝑖 − 𝛿𝑗 𝛿𝑖 − 𝛿𝑗
𝑇
= 

𝑖𝑗∈𝐸

𝑤𝑖𝑗𝐿𝑖𝑗

𝑥𝑇𝐿𝐺𝑥 ≥ 0 so positive semidefinite 𝐿𝐺 ≽ 0.

nullspace = span{ 1,1, … , 1 } for connected 𝐺.

Will talk about inverse 𝐿𝐺
−1 ≽ 0 orthogonal to nullspace.

Can talk about square root 𝐿𝐺
−1/2

because 𝐿𝐺
−1 ≽ 0.𝐴 ≽ 𝐵 means 𝑥𝑇𝐴𝑥 ≥ 𝑥𝑇𝐵𝑥
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Definition. 𝐻 = (𝑉, 𝐹, 𝑢) is a 𝜅 −approximation 
of 𝐺 = 𝑉, 𝐸, 𝑤 if:

where   𝐿𝐺 = σ𝑖𝑗𝑤𝑖𝑗 𝛿𝑖 − 𝛿𝑗 𝛿𝑖 − 𝛿𝑗
𝑇

is the Laplacian matrix of G.

Physical Approximation [ST’04]

𝐿𝐻 ≼ 𝐿𝐺 ≼ 𝜅 ⋅ 𝐿𝐻



Why?



0. Energy Encodes Cuts

𝑥: 𝑉 → {0,1}
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0. Energy Encodes Cuts

𝑥: 𝑉 → {0,1}

0

0

0

0

1

1

ℰ𝐺 𝑥 = 1
2
+ 1

2
+ 1

2= 3



Physical approx. implies cut approx.

𝑥: 𝑉 → {0,1}

0

0

0

0

1

1

0. Energy Encodes Cuts



1. Energy controls physical processes

Electrical Flow:

minimizes energy

Spring Network:

settles at min. energy

Heat Flow:
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1. Energy controls physical processes

Electrical Flow:

minimizes energy

Spring Network:

settles at min. energy

Heat Flow:

Solving any of these 
reduces to solving a 

Laplacian linear system

𝐿𝑥 = 𝑏



1. Solving 𝐿𝑥 = 𝑏 fast [ST’04]

xT LG x ~ xT LH x : can solve systems

in LG by solving systems in LH.

𝐿𝑥 = 𝑏

Electrical Flow Heat Flow Spring Network



2. Spectral Graph Theory

Courant-Fischer Thm: xT LG x determines

Thus for physical approx. H of G:

Now H inherits many combinatorial properties:

random walks, colorings, spanning trees, etc.



3. Natural Setting

Spectral formulation more tractable:

xTLx better behaved over Rn than {0,1}n.

Cuts are discrete objects.

Quadratic forms are continuous objects,

with a richer set of global transformations.



Examples
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G=Kn H = random d-regular x (n/d)

|EG| = O(n2)



Example: Dumbell

G1 G2
G3

H1
H2 H3



Example: Dumbell

G1 G2
G3

H1
H2 H3

must have 
weight 1



Example: Dumbell

G1 G2
G3

H1
H2 H3

must have 
weight O(n)



Will show how to do this 
for every graph…



Theorem. Every weighted graph G has a weighted 

subgraph H with at most 9𝑛 log 𝑛 /𝜖2 edges s.t.

𝐿𝐺 ≼ 𝐿𝐻 ≼ 1 + 𝜖 𝐿𝐺 .

Moreover, 𝐻 can be found in time 𝑂~(𝑚/𝜖2).



Basic idea: Random Sampling

Choose each edge 𝑒 with some probability 𝑝𝑒.

take 𝑘 independent samples.

If included, add to 𝐻 with weight 1/𝑘𝑝𝑒.

𝔼 𝐿𝐻 = 𝔼 𝐿𝑒 = 

𝑒∈𝐺

𝑝𝑒 ⋅
𝑏𝑒𝑏𝑒

𝑇

𝑝𝑒
= 𝐿𝐺 .

Law of large numbers: as 𝑘 → ∞, 
𝐿𝐻 → 𝐿𝐺

Question: how fast does this happen?
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Attempt: Uniform Sampling

Works for 𝐾𝑛:

Bad for dumbbell:

Need Ω(𝑚) samples to catch the bridge edge. 

*O(nlogn) samples for i.i.d. edges
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Attempt: Uniform Sampling

Works for 𝐾𝑛:

Bad for dumbbell:

Need Ω(𝑚) samples to catch the bridge edge. 

Need to bias distribution 
towards this edge
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𝐑𝐞𝐟𝐟(𝑒) = energy dissipation when a unit current 
is injected/removed across ends of 𝑒.

Effective Resistance

electrical flow minimizes energy



𝐑𝐞𝐟𝐟(𝑒) = energy dissipation when a unit current 
is injected/removed across ends of 𝑒.

Effective Resistance

𝐑𝐞𝐟𝐟 𝑒 = 12 = 1
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𝐑𝐞𝐟𝐟(𝑒) = energy dissipation when a unit current 
is injected/removed across ends of 𝑒.

Effective Resistance

𝐑𝐞𝐟𝐟 𝑒 = Τ2 3 2 + Τ1 3 2 + Τ1 3 2 = 2/3
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many alternate paths = lower resistance
= electrically “redundant”
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𝐑𝐞𝐟𝐟(𝑒) = energy dissipation when a unit current 
is injected/removed across ends of 𝑒.

Effective Resistance

many alternate paths = lower resistance
= electrically “redundant”

few alternate paths = high resistance
= electrically “important”

Idea: sample edges according to effective resistances.



Theorem. Every weighted graph G has a weighted 

subgraph H with at most 9𝑛 log 𝑛 /𝜖2 edges s.t.

𝐿𝐺 ≼ 𝐿𝐻 ≼ 1 + 𝜖 𝐿𝐺 .

Moreover, 𝐻 can be found in time 𝑂~(𝑚/𝜖2).

Algorithm: sample 9𝑛 log 𝑛 /𝜖2 edges independently 
according to effective resistances.



3 Step Proof

1. Reduction to a linear algebra problem

2. Solution of linear algebra problem by random 
matrix theory.

3. Fast computation of sampling probabilities



[Spielman-S’08]

Part 1: Reduction to Linear 
Algebra



Original Goal

Given 

Find sparse 

satisfying



Outer Product Expansion

Recall:



Outer Product Expansion

Recall:

For a weighted subgraph H:
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Quadratic Forms as Ellipsoids

𝑥𝑇𝐿𝑥 ≤ 1

{𝑏𝑒𝑏𝑒
𝑇}

Consider level sets
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Containment of Ellipsoids

𝐿𝐺

𝜅 ⋅ 𝐿𝐺

𝐿𝐻

𝐿𝐺 ≼ 𝐿𝐻 ≼ 𝜅 ⋅ 𝐿𝐺



Invariant Under Rescaling
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Invariant Under Rescaling

𝐿𝐺
−1/2

𝐿𝐺𝐿𝐺
−1/2

≼ 𝐿𝐺
−1/2

𝐿𝐻𝐿𝐺
−1/2

≼ 𝜅 ⋅ 𝐿𝐺
−1/2

𝐿𝐺𝐿𝐺
−1/2

Choose 𝑀 = 𝐿𝐺
−1/2



Invariant Under Rescaling

𝐼 ≼ 𝐿𝐺
−1/2

𝐿𝐻𝐿𝐺
−1/2

≼ 𝜅 ⋅ 𝐼

Choose 𝑀 = 𝐿𝐺
−1/2



Invariant Under Rescaling

𝐼 ≼ 𝐿𝐺
−1/2

𝐿𝐻𝐿𝐺
−1/2

≼ 𝜅 ⋅ 𝐼

“H divided by G”
“relative Laplacian”



Invariant Under Rescaling

𝐼 ≼

𝑒

𝑠𝑒𝐿𝐺
−1/2

𝑏𝑒𝑏𝑒
𝑇𝐿𝐺

−1/2
≼ 𝜅 ⋅ 𝐼



Invariant Under Rescaling

𝐼 ≼

𝑒

𝑠𝑒𝑣𝑒𝑣𝑒
𝑇 ≼ 𝜅 ⋅ 𝐼

Rescaled 
incidence vector

𝑣𝑒 ≔ 𝐿𝐺
−1/2

𝑏𝑒



Invariant Under Rescaling

𝐼 ≼

𝑒

𝑠𝑒𝑣𝑒𝑣𝑒
𝑇 ≼ 𝜅 ⋅ 𝐼

Rescaled 
incidence vector

𝑣𝑒 ≔ 𝐿𝐺
−1/2

𝑏𝑒



𝑒

𝑣𝑒𝑣𝑒
𝑇 = 𝐼



Equivalent Problem

Given 

Find sparse 

satisfying



Core Problem

m vectors in Rn
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m vectors in Rn

variance is the same 
in every direction
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Core Problem

m vectors in Rn O~(n) vectors in Rn
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Examples of the Reduction

Graph
Q: Why rescale to identity?

A: All test directions are equally important
in multiplicative approximation.



Examples of the Reduction

Graph

Rescaling reveals 
important vectors

Q: Why rescale to identity?
A: All test directions are equally important

in multiplicative approximation.



Effective Resistance View

For a graph G, the vectors are

Lengths of vectors are: 
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Effective Resistance View

For a graph G, the vectors are

Lengths of vectors are: 



Confirmation of Electrical Intuition

• Want G an H to be electrically equivalent

• Edges with higher Reff are more electrically 
significant = have higher norm after rescaling



Core Problem

m vectors in Rn
O~(n) vectors in Rn



Part 2: Randomized

solution of linear algebra 
problem



Core Problem

m vectors in Rn
O~(n) vectors in 

Rn



Approximating the Identity

Given σ𝑖 𝑣𝑖𝑣𝑖
𝑇 = 𝐼, consider the random matrix

𝑋 =
𝑣𝑖𝑣𝑖

𝑇

𝑝𝑖
with probability 𝑝𝑖

Then 𝔼𝑋 = σ𝑖 𝑣𝑖𝑣𝑖
𝑇 = 𝐼 .

Take 𝑘 i.i.d. samples 𝑋1, … , 𝑋𝑘. Would like

1 − 𝜖 𝐼 ≼
1

𝑘


𝑖

𝑋𝑖 ≼ 1 + 𝜖 𝐼



The Chernoff Bound

Suppose 𝑋1, … , 𝑋𝑘 are i.i.d. random variables with

0 ≤ 𝑋𝑖 ≤ 𝑀 and 𝔼𝑋𝑖 = 1.

Then

ℙ
1

𝑘


𝑖

𝑋𝑖 − 1 ≥ 𝜖 ≤ 2exp −
𝑘𝜖2

4𝑀
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4𝑀

𝑘 = 4𝑀/𝜖2 samples give
1

𝑘


𝑖

𝑋𝑖 ≈𝜖 1

with constant probability.
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The Matrix Chernoff Bound 
[Rudelson’99, AW’02, Tropp’11]

Suppose 𝑋1, … , 𝑋𝑘 are i.i.d. random 𝑑 × 𝑑
matrices with

0 ≼ 𝑋𝑖 ≼ 𝑀 ⋅ 𝐼 and 𝔼𝑋𝑖 = 𝐼.

Then

ℙ
1

𝑘


𝑖

𝑋𝑖 − 𝐼 ≥ 𝜖 ≤ 2𝒅 exp −
𝑘𝜖2

4𝑀
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𝑋 =
𝑣𝑖𝑣𝑖

𝑇

𝑝𝑖
with prob. 𝑝𝑖 , 𝔼𝑋 = 𝐼.

In our case

Want to minimize 𝑀 = max
𝑖

𝑣𝑖𝑣𝑖
𝑇

𝑝𝑖
= max

𝑖

||𝑣𝑖||
2

𝑝𝑖

To make this this tight for all 𝑣𝑖 set 𝑝𝑖 =
||𝑣𝑖||

2

𝑀
.

But σ𝑖 𝑝𝑖 = σ𝑖
||𝑣𝑖||

2

𝑀
= σ𝑖

𝑇𝑟 𝑣𝑖𝑣𝑖
𝑇

𝑀
=

𝑇𝑟(σ𝑖 𝑣𝑖𝑣𝑖
𝑇)

𝑀
=

𝑛

𝑀
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||𝑣𝑖||

2

𝑀
= σ𝑖

𝑇𝑟 𝑣𝑖𝑣𝑖
𝑇

𝑀
=

𝑇𝑟(σ𝑖 𝑣𝑖𝑣𝑖
𝑇)

𝑀
=

𝑛

𝑀

Must have 𝑀 = 𝑛
Thm: 4𝑛 log 𝑛/𝜖2 samples suffice.
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Rudelson’99:  This works whp:

How to Approximate the Identity



Given 

Sample                               vectors randomly with 
replacement,  by

Set                                 for chosen vectors.

Rudelson’99:  This works whp:

How to Approximate the Identity

For a graph, 𝑝𝑒 ∝ 𝑹𝒆𝒇𝒇𝑮(𝒆)



Theorem. Every weighted graph G has a weighted 

subgraph H with at most 4𝑛 log 𝑛 /𝜖2 edges s.t.

𝐿𝐺 ≼ 𝐿𝐻 ≼ 1 + 𝜖 𝐿𝐺 .

Algorithm: sample 4𝑛 log 𝑛 /𝜖2 edges independently 
according to effective resistances.



Theorem. Every weighted graph G has a weighted 

subgraph H with at most 9𝑛 log 𝑛 /𝜖2 edges s.t.

𝐿𝐺 ≼ 𝐿𝐻 ≼ 1 + 𝜖 𝐿𝐺 .

Moreover, 𝐻 can be found in time 𝑂~(𝑚/𝜖2).

Algorithm: sample 9𝑛 log 𝑛 /𝜖2 edges independently 
according to approximate effective resistances.



[Spielman-S’08]

Part 3: Fast Calculation of 
Sampling Probabilities



Computing A Single Resistance

Recall
𝑅𝑒𝑓𝑓𝐺 𝑒 = 𝑏𝑒

𝑇𝐿𝐺
−1𝑏𝑒

So can compute a resistance by solving 𝐿𝐺𝑥 = 𝑏𝑒
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𝑇𝐿𝐺
−1𝑏𝑒

So can compute a resistance by solving 𝐿𝐺𝑥 = 𝑏𝑒

Amazing Theorem [Spielman-Teng’04…] Can 
solve linear systems in 𝐿𝐺 in time 𝑂 𝑚𝑙𝑜𝑔𝑛 .



Computing A Single Resistance

Recall
𝑅𝑒𝑓𝑓𝐺 𝑒 = 𝑏𝑒

𝑇𝐿𝐺
−1𝑏𝑒

So can compute a resistance by solving 𝐿𝐺𝑥 = 𝑏𝑒

Amazing Theorem [Spielman-Teng’04…] Can 
solve linear systems in 𝐿𝐺 in time 𝑂 𝑚𝑙𝑜𝑔𝑛 .

But need to compute all resistances…



Resistances are Distances

Outer product expansion:



Resistances are Distances

Outer product expansion:

Sampling probabilities:



Nearly Linear Time



Nearly Linear Time

So care about distances between cols. of BL-1



Dimension Reduction

Johnson-Lindenstrauss Lemma [JL’84]:

Suppose 𝑥1, … , 𝑥𝑛 are points in ℝ𝑑.

Let 𝑄𝑘×𝑛 be a random 𝑘 −dimensional projection.

Then
||𝑄𝑥𝑖 − 𝑄𝑥𝑗||2 = 1 ± 𝜖 ||𝑥𝑖 − 𝑥𝑗||2

With high probability as long as

𝑘 ≥ 10 log 𝑛 /𝜖2



Dimension Reduction

Johnson-Lindenstrauss Lemma [JL’84]:

Suppose 𝑥1, … , 𝑥𝑛 are points in ℝ𝑑.

Let 𝑄𝑘×𝑛 be a random Bernoulli matrix.

Then
||𝑄𝑥𝑖 − 𝑄𝑥𝑗||2 ∝ 1 ± 𝜖 ||𝑥𝑖 − 𝑥𝑗||2

With high probability as long as

𝑘 ≥ 10 log 𝑛 /𝜖2



Johnson-Lindenstrauss with 𝜖 = 1/2

So care about distances between cols. of BL-1



Nearly Linear Time

So care about distances between cols. of BL-1

Johnson-Lindenstrauss: Take random Qlogn x m

Set Z=QBL-1



Nearly Linear Time
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Z=QBL-1

ZL=QB

ziL=(QB)i



Nearly Linear Time

Find rows of Zlog n x n by

Z=QBL-1

ZL=QB

ziL=(QB)i

Solve O(logn) linear systems in L using 

fast Laplacian solver solver

learns all pairwise resistances by probing a few 
random electrical flows.



Nearly Linear Time

Find rows of Zlog n x n by

Z=QBL-1

ZL=QB

ziL=(QB)i

Solve O(logn) linear systems in L using 

fast Laplacian solver solver

Can show approximate Reff suffice.

(only change 𝑀 by a constant factor)



Actual Algorithm

Input: undirected graph 𝐺 = (𝑉, 𝐸, 𝑤)

Output: subgraph H with 𝐿𝐺 ≼ 𝐿𝐻 ≼ 1 + 𝜖 𝐿𝐺
1. Let 𝑄log 𝑛×𝑚be a scaled random projection.

Compute approximate resistance matrix
𝑍 = 𝑄𝐵𝐿+

by solving log 𝑛 Laplacian systems

2. Repeat the following 9𝑛𝑙𝑜𝑔𝑛/𝜖2 times:

choose edge 𝑒 = 𝑖𝑗 w.p. 𝑝𝑒 ∝ ||𝑍(𝛿𝑖 − 𝛿𝑗)||
2

add 𝑒 to 𝐻 with weight 𝑠𝑒 = 1/𝑝𝑒



Actual Algorithm

Input: undirected graph 𝐺 = (𝑉, 𝐸, 𝑤)

Output: subgraph H with 𝐿𝐺 ≼ 𝐿𝐻 ≼ 1 + 𝜖 𝐿𝐺
1. Let 𝑄log 𝑛×𝑚be a scaled random projection.

Compute approximate resistance matrix
𝑍 = 𝑄𝐵𝐿+

by solving log 𝑛 Laplacian systems

2. Repeat the following 9𝑛𝑙𝑜𝑔𝑛/𝜖2 times:

choose edge 𝑒 = 𝑖𝑗 w.p. 𝑝𝑒 ∝ ||𝑍(𝛿𝑖 − 𝛿𝑗)||
2

add 𝑒 to 𝐻 with weight 𝑠𝑒 = 1/𝑝𝑒

+improvements by [Koutis-Levin-Peng’12]



Two Useful Ways to view a Graph

bunch of vectorselectrical network

𝐿𝐺 =

𝑒
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𝑇

𝐼 =

𝑒

𝑣𝑒𝑣𝑒
𝑇



Two Useful Ways to view a Graph

bunch of vectorselectrical network

𝐿𝐺 =

𝑒

𝑏𝑒𝑏𝑒
𝑇

𝐼 =

𝑒

𝑣𝑒𝑣𝑒
𝑇

𝑅𝑒𝑓𝑓 𝑒 = ||𝐿𝐺
−1/2

𝑏𝑒||
2 = ||𝑣𝑒||

2



Two Useful Tools

Matrix Chernoff Bound

ℙ
1

𝑘


𝑖

𝑋𝑖 − 𝐼 ≥ 𝜖 ≤ 2𝒅 exp −
𝑘𝜖2

4𝑀

Johnson-Lindenstrauss Lemma



Advantages over pure combinatorics

There is a global rescaling transformation:

𝐿𝐺 ≈ 𝐿𝐻 iff 𝐿𝐺
−1/2

𝐿𝐻𝐿𝐺
−1/2

≈ 𝐼

Powerful random matrix tools apply naturally:

1. Matrix Chernoff bound

2. Johnson-Lindenstrauss Lemma



Some Improvements

[Batson-Spielman-S’08]:  
4𝑛

𝜖2
edges

[Koutis-Levin-Peng’12] 𝑂
𝑚 log2 𝑛

𝜖2
running time

[Koutis’14] parallel algorithm

[Kapralov, Lee, Musco x2, Sidford’14] 

1-pass dynamic streaming algorithm

[Lee-Sun’17]: O(mlog(n)) time with O(n/eps^2) 
edges



Code

http://www.cs.cmu.edu/~jkoutis/SpectralAlgorit
hms.htm

http://www.cs.cmu.edu/~jkoutis/SpectralAlgorithms.htm

