Spectral Sparsification of Graphs
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Goals

. Explain spectral sparsification, a form of lossy
compression of graphs.

. Introduce physical and geometric ways of
thinking about graphs.



Graphs

G=(V.E,w) undirected
[V]=n
w: E—>R,




Sparsification

Approximate any graph G by a sparse graph
H.




Sparsification

Approximate any graph G by a sparse graph
H.

—H is faster to compute with than G
— Nontrivial statement about G
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Some properties of interest

Sizes of cuts “bottlenecks”
Clusters “communities”
Distances (shortest paths)

Random walks

Single / multicommodity flows

Electrical flows + other physical processes
Coloring

Hamiltonian / Eulerian cycle

Subgraph counts e.g. triangles
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Cut Approximation [Benczur-Karger’'96]

H approximates G if
for every subset S C V
sum of weights of edges leaving S is preserved
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Example: The Complete Graph

G=K H = random d-regular

D

|[Egl = O(n?) |Ey| = O(dn)

n
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G=K H = random d-regular
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Example: The Complete Graph

G=K H = random d-regular
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Example: The Complete Graph

i

|[Egl = O(n?) |Ey| = O(dn)

witc(85) = 15| - (5] [wtn(65) =~ (d/n)|5| - []
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Example: The Complete Graph

G=K H = random d-regular

n




Example: The Complete Graph

G=K H = random d-regular x (n/d)

n
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Cut Approximation [Benczur-Karger’'96]

H approximates G if
for every subset S C V
sum of weights of edges leaving S is preserved
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[Benczur-Karger’96]: For every G can quickly
find H with O(nlogn/g?) edges.




Cut Approximation [Benczur-Karger’'96]

H approximates ( G and H have the same

for every subs: ‘bottlenecks”
sum of WEightS Ul EUgeEsS i€avi pleSEFVEd
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[Benczur-Karger’96]: For every G can quickly
find H with O(nlogn/g?) edges.



Cut Approximation [Benczur-Karger’'96]

H approximates ( G and H have the same
for every subsi ‘bottlenecks’.

BES 1EAVI pleSEFVEd
Going below O(n) would

disconnect the graph.
S
I
I
)

[Benczur-Karger’96]: For every G can quickly
find H with O(nlogn/g?) edges.
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Physical Approximation
[Spielman-Teng’04]

(i.e., spectral approximation)



Resistor Network Metaphor
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Resistor Network Metaphor
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Resistor Network Metaphor

potentials x:V — R



Resistor Network Metaphor

2
energy & (x) = ZijEE(xi o xj)



Resistor Network Metaphor

2
energy & (x) = ZijEE(xi o xj)

—12 4124224524124 22= 36



Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V, E,w) if for all potentials x:V — R:

Eg(x) < E:(x) < k- Ey(x)

“Electrically Equivalent”



Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V, E,w) if for all potentials x:V — R:

2 uij(xl- — Xj)z < Z Wij (Xi — Xj)z < K- z ul-j(xi — Xj)z

i[jEF ijEE ijEF

“Electrically Equivalent”



Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V, E,w) if for all potentials x:V — R:

z ul-j(xl- — Xj)z < Z Wij (Xi — Xj)z < K- Z ul-j(xi — Xj)z

i[jEF ijEE ijEF

Laplacian matrix [ xLox [ xT'Lyx




Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V, E,w) if for all potentials x:V — R:

xTLyx < xTLex < k-x'Lyx

where| L; = Zij Wij(5i — 5j)(5i - Sj)T

is the Laplacian matrix of G.



Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V, E,w) if for all potentials x:V — R:

xTLyx < xTLex < k-x'Lyx

where| L; = Zij Wij(5i — 5j)(5i - Sj)T

if 1 =1
is the Laplacian matrix of G. ( )



Properties of the Laplacian

L = z wyj (8i = 6,)(8;~8) = z WijLij

ijEE ijEE

xTLex = 0 so positive semidefinite L; > 0.

A = B means xTAx > x'Bx



Properties of the Laplacian

L = z wyj (8i = 6,)(8;~8) = z WijLij

ijEE ijeE
xTLex = 0 so positive semidefinite L; > 0.

nullspace = span{(1,1, ..., 1)} for connected G.

ZijEE Wi (Xi — xj)z = 0iffx; = xj forevery ij € E



Properties of the Laplacian

L = z wyj (8i = 6,)(8;~8) = z WijLij

ijEE ijEE
xTLex = 0 so positive semidefinite L; > 0.
nullspace = span{(1,1, ..., 1)} for connected G.

Will talk about inverse Lgl = 0 orthogonal to nullspace.



Properties of the Laplacian

L = z wyj (8i = 6,)(8;~8) = z WijLij

ijEE ijeE
xTLex = 0 so positive semidefinite L; > 0.

nullspace = span{(1,1, ..., 1)} for connected G.

Will talk about inverse Lgl = 0 orthogonal to nullspace.

Can talk about square root L;1/2 because Lz* = 0.



Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V,E,w) if:

LH<LG<K.LH

where| L; = Zij Wij(5i — 5j)(5i - Sj)T

is the Laplacian matrix of G.



Why?



0. Energy Encodes Cuts

xV - {0,1}
0 0




0. Energy Encodes Cuts

xV - {0,1}
0 0

0 1

Ec(x)=1"+17+1"=13



0. Energy Encodes Cuts

xV - {0,1}
0 0

0 1

Physical approx. implies cut approx.



1. Energy controls physical processes
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Electrical Flow:

minimizes energy
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Spring Network:
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1. Energy controls physical processes

Electrical Flow:

minimizes energy

Spring Network:
settles at min. energy

Heat Flow:



1. Energy controls physical processes

Electrical Flow: Q A

MinimIzes ent golving any of these
reduces to solving a

Spring Network: Laplacian linear system |
settles at min Lx = b

Heat Flow:




1. Solving Lx = b fast [ST'04]

x"L;x~x"L, x:can solve systems
in Lg by solving systems in L,,.

Lx =0Db

Electrical Flow | | Heat Flow Spring Network



2. Spectral Graph Theory

Courant-Fischer Thm: x” L x determines A;(L¢)

Thus for physical approx. H of G:
(1 —e)N(G) < N(H) < (14 e)N(G)
Now H inherits many combinatorial properties:
random walks, colorings, spanning trees, etc.



3. Natural Setting

Spectral formulation more tractable:
x"Lx better behaved over R" than {0,1}".

Cuts are discrete objects.
Quadratic forms are continuous objects,
with a richer set of global transformations.



Examples



Example: The Complete Graph

G=K H = random d-regular x (n/d)
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Example: The Complete Graph

G=K H = random d-regular x (n/d)
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Example: The Complete Graph

G=K H = random d-regular x (n/d)
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Example: Dumbell

G,

G=G1+G+G3
1'Gr = 21 Gz + 21 Gox + xTGga:



Example: Dumbell
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weight 1



Example: Dumbell

must have
weight O(n)
G, G, / G;
O O @ @
H, H, H
@ O O e =



Will show how to do this
for every graph...



Theorem. Every weighted graph G has a weighted
subgraph H with at most 9n logn /E2 edges s.t.
LG < LH < (1 + E)LG.

Moreover, H can be found in time 0~ (m/e?).



Basic idea: Random Sampling

Choose each edge e with some probability p,.

take k independent samples.
If included, add to H with weight 1/kp,.

b.bl
eezLG.
e

ElLy] = ElLe] = ) pe-~

eeG



Basic idea: Random Sampling

Choose each edge e with some probability p,.

take k independent samples.
If included, add to H with weight 1/kp,.

b.bl
eezLG.
e

ElLy] = ElLe] = ) pe-~

eeG

Law of large numbers: as k — oo,
Ly = Lg
Question: how fast does this happen?



Attempt: Uniform Sampling

Works for K., 0 O

Y

*O(nlogn) samples for i.i.d. edges



Attempt: Uniform Sampling

Works for K., O O

) ¢

Bad for dumbbell:

Need 2(m) samples to catch the bridge edge.



Attempt: Uniform Sampling

Need to bias distribution
towards this edge _ ) @ O

Bad for dumbbell:

Need 2(m) samples to catch the bridge edge.



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.
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Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

KN

5

| A

electrical flow minimizes energy



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

KN

5

| A
Reff(e) = 1% =1



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.
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Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

Y.om
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Reff(e) = (2/3)% + (1/3)? + (1/3)% = 2/3



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

Y.om
M%@
|

many alternate paths = lower resistance
= electrically “redundant”



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

4 )

few alternate paths = high resistance
= electrically “important”

many alternate paths = lower resistance
_ = electrically “redundant” Y




Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

4 )

few alternate paths = high resistance
= electrically “important”

many alternate paths = lower resistance
_ = electrically “redundant” Y

[ Idea: sample edges according to effective resistances. ]




Theorem. Every weighted graph G has a weighted
subgraph H with at most 9n logn /62 edges s.t.
LG < LH < (1 + E)LG.

Moreover, H can be found in time 0~ (m/e?).

-

\_

Algorithm: sample 9nlogn /€% edges independently
according to effective resistances.

~

J




3 Step Proof

1. Reduction to a linear algebra problem

. Solution of linear algebra problem by random
matrix theory.

. Fast computation of sampling probabilities



[Spielman-S’08]

% > %
Part 1: Reduction to Linear
Algebra




Original Goal
Given (;

Find sparse H

satisfying LG < LH < K - LG



Outer Product Expansion

Recall:

L= Y (6;—6;)(6;— ;)" = > beby.
1€l ecl



Outer Product Expansion

Recall:

L= Y (6;—6;)(6;— ;)" = > beby.
1€l ecl

For a weighted subgraph H:

LH — Z Sebebg
eck

where se=wt(e) in H.



Original Goal
Given (;

Find sparse H

satisfying

Lg X Ly X K- Lg



Original Goal

Gven Lo =) bbl by =6 -0

Find sparse

Se = 0

satisfying

Lag=Ly=) cq sebeb!l < k- Lg



Quadratic Forms as Ellipsoids

{bebe }

Lo =Y bbbl  by=6—70;

ecG



Quadratic Forms as Ellipsoids

xTLx <1




Quadratic Forms as Ellipsoids
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Quadratic Forms as Ellipsoids




Containment of Ellipsoids




Invariant Under Rescaling




Invariant Under Rescating-~







Invariant Under Rescaling

e

~ 7’

MLGM % MLHM % K - MLGM



Invariant Under Re¢ choose v = 1."/7




Invariant Under Re¢ choose v = 1."/7

K-l



Invariant Under Rescaling

“H divided by G”
“relative Laplacian”

I L Lyl <



Invariant Under Rescaling




Invariant Under Rescaling

Rescaled

incidence vector

v, = Lgl/z b,




Invariant Under Rescaling

Rescaled S E vl =1
incidence vector | _~ RN

_ 1—1/2 ¢ N



Equivalent Problem

Given | = E ’Ue’UZ
e

Find sparse

Se = 0

satisfying

I < Zeegsevevg < k-1



Core Problem




Core Problem

Ze<u7 U€>2 =1

variance is the same ]

in every direction




Core Problem

[ O~(n) vectors in R" }

SeUe



Core Problem
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I < Z Sevevg <kl
&



Examples of the Reduction

Graph La=>. bebl 1 = Z VeV

% oK %

~1/2;,

Ve = Li e



Examples of the Reduction

Graph Leg=>,bbl T=>_ v}
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Examples of the Reduction

-~ . - T LI A A T Z T
G Q: Why rescale to identity? _ e U€U€
A: All test directions are equally important -
in multiplicative approximation. ,’ ‘\
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Examples of the Reduction

—~— [ - A w—— 7 1+ 1 T . Z T
G Q: Why rescale to identity? _ e U€U€
A: All test directions are equally important -
in multiplicative approximation. ,’ ‘\
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Effective Resistance View

For a graph G, the vectors are v, = Lél/zbe

Lengths of vectors are:

—1/2 —
[vell? = 1LG" *be||? = bT L' be



Effective Resistance View

For a graph G, the vectors are v, = Lél/zbe

Lengths of vectors are:

lvell2 = |1 L5 ?be||2 = BT L b, = Reff (e)



Effective Resistance View

—1/2
For a graph G, the vectors are v, = L / b,
Lengths of vectors are:

lvel|2 = | La"?be||2 = BT L b, = Reffg (e)

ﬂ—_\\
(£) 1A
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Confirmation of Electrical Intuition

* Want G an H to be electrically equivalent

* Edges with higher Reff are more electrically
significant = have higher norm after rescaling
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Core Problem

m vectors in R" ]___[ O~(n) vectors in R" J

~




Part 2: Randomizeg¥.

solution of linear algebra
problem



Core Problem

7/

g m vectors in R" ]_ _ - _{ O~(n) vectors in }
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Approximating the ldentity

Given Y; v;v] = I, consider the random matrix

vv;

Di

X =

with probability p;

ThenEX =Y. v;vi =1.

Take k i.i.d. samples X4, ..., X;.. Would like
1
(1—-e)l < szi < (1+¢)l
i



The Chernoff Bound

Suppose X4, ..., X are i.i.d. random variables with

0<X; <M and EX; = 1.

_ ke?
< Z2exp Y,

Then

1V
M

|1
P EZXi—l
_ L



The Chernoff Bound

k = 4M/e? samples give

1
KD Kime

with constant probability. EX; = 1.

_ ke?
< Z2exp Y,

dom variables with

Then

1V
M

|1
P EZXi—l
_ L



The Chernoff Bound

Suppose X4, ..., X are i.i.d. random variables with

0<X; <M and EX; = 1.

_ ke?
< Z2exp Y,

Then

1V
M

|1
P EZXi—l
_ L



The Matrix Chernoff Bound
[Rudelson’99, AW’02, Tropp’11]

Suppose X3, ..., Xy arei.i.d. random d X d
matrices with

O0<X;<M-I and EX; = 1.

Then

1|1
P EZXL-—I
_ [

1V
m
IN
DN
=
(D
P<
e
N
=
m
N
N~




The Matrix Chernoff Bound
[Rudelson’99, AW’02, Tropp’11]

k =4M /€% samples give dom
PR
with constant probability. EX; = 1.
Then
1 kez
P szi_ > €| < 2dexp v,
: i




The Matrix Chernoff Bound
[Rudelson’99, AW’02, Tropp’11]

Suppose X3, ..., Xy arei.i.d. random d X d
matrices with

O0<X;<M-I and EX; = 1.

Then

1|1
P EZXL-—I
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1V
m
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In our case

viv] .
X = with prob. p;,
Pi
« .. viv-T
Want to minimize M = max > l
l L

To make this this tight for all v; set p;

EX = 1.

— IMax

l




In our case

T
ViV .
X = with prob. p;, EX = I.
Di
T 2
- e Vv oy
Want to minimize M = max ||—|| = m_ax” il
l Pi l Di
||vi]]2

To make this this tight for all v; set p; =

|[vil]?
M

But 2.;pi = X



In our case

T
ViVj .
X = with prob. p;, EX = I.
Pi
r 2
Want to minimize M = max LIl = m_ax” il
l Pi l Di
|[vil|?

To make this this tight for all v; set p; =

But 3, p; = 3 AE = 3, T )



In our case

ViViT .
X = with prob. p;,
Pi
v-v;T
Want to minimize M = max >
l L

To make this this tight for all v; set p; =

IIVLII2

But ;i = 2 = i Tr(v v)

Tr(X; viv’lr)
M




In our case

T
ViV; .
X = with prob. p;, EX = I.
Pi

T 112

Want to minimize M = max ||-=: || — max 2!
l Pi l Di

112

To make this this tight for all v; set p; = ”vnllel

T
But Zipl 2 ||vl||2 — Z Tr(v” ) _ TT(Zi”iv{) _%

M



In our case

vV .
X = with prob. p;, EX = I.
p.
- | a
Must have M = n | _ Ak
) | || = max
Thm: 4nlogn/e“ samples suffice. i D




How to Approximate the Identity

Given ZZ v@-v,’f —

(Sample nlog n/e2 vectors randomly with
replacement, by | p; oc ||v;||*.

\Set S; — 1/]07; for chosen vectors.

J

Rudelson’99: This works whp:
1—e=x> svv; X1+e



How to Approximate the Identity

_ For a graph, p, «< Reff:(e)
Given ZZ v@-v,’f —

/Sample nlog n/e2 vecto| s randomly with
replacement, by | p; oc ||v; ‘2,

\Set S; — 1/]07; for chosen vectors.

J

Rudelson’99: This works whp:
1—e=x> svv; X1+e



Theorem. Every weighted graph G has a weighted
subgraph H with at most 41 log n /E2 edges s.t.
LG < LH < (1 + E)LG.

-

\_

Algorithm: sample 4nlogn /e? edges independently
according to effective resistances.

~

J




Theorem. Every weighted graph G has a weighted
subgraph H with at most 9n logn /E2 edges s.t.
LG < LH < (1 + E)LG.

Moreover, H can be found in time

-

\_

Algorithm: sample 9nlogn /€% edges independently
according to approximate effective resistances.

~

J




[Spielman-S’08]

Part 3: Fast Calculation of
Sampling Probabilities



Computing A Single Resistance

Recall
Reffz(e) = blLg' b,

So can compute a resistance by solving Lox = b,



Computing A Single Resistance

Recall
Reffz(e) = blLg' b,

So can compute a resistance by solving Lox = b,

Amazing Theorem [Spielman-Teng’04...] Can
solve linear systems in L. in time O(mlogn).



Computing A Single Resistance

Recall
Reffz(e) = blLg' b,

So can compute a resistance by solving Lox = b,

Amazing Theorem [Spielman-Teng’04...] Can
solve linear systems in L. in time O(mlogn).

But need to compute all resistances...



Resistances are Distances

Outer product expansion:

Lg=> bbbl =B'B for rows(B) = {bl}

| 000 -|
B = /O‘{ 00 | Seﬂncé eéav\ledcx
1 udene matny
\ 10500 /




Resistances are Distances

Outer product expansion:
Lg=> bbbl =B'B for rows(B) = {bl}
Sampling probabilities:
oe|2 = b7 L5 b,
=blL,'B"BL_"b,
= |BL: (8 — 6,)]7 for e = 1j.



Nearly Linear Time



Nearly Linear Time

So care about distances between cols. of BL1

BL_157;

BL_l(Sj



Dimension Reduction

Johnson-Lindenstrauss Lemma [JL'84]:

Suppose x4, ..., X, are points in R,

Let Q«, be a random k —dimensional projection.
Then

[1@x; — Qxill, = (1 x e)||x; — x|
With high probability as long as

k > 10logn /€?



Dimension Reduction

Johnson-Lindenstrauss Lemma [JL'84]:
Suppose x4, ..., X, are points in R,
Let Q. «, be a random

Then

[1Qx; — Qx;||, < (1 £ e)]|x; — xj]],
With high probability as long as

k > 10logn /€?



Johnson-Lindenstrauss with e = 1/2

So care about distances between cols. of BL1

Random ()

[ QBL_léz

BL™14; QBL~15;

Rm Rlog n



Nearly Linear Time

So care about distances between cols. of BL
Johnson-Lindenstrauss: Take random Qy,,, x m
Set Z=QBL1

(logn xm) (m X n)l (logn X n)

o prL-1 7




Nearly Linear Time

(logn X n)




Nearly Linear Time

(logn x n)

Find rows of Z,,,, ., by _ZJ

ZeQBLY e
z=qg | Reff(ij) ~ || Z(0; —6;)]]"

zl=(@8),




Nearly Linear Time

logn X n

Find rows of Z,,,, ., by (_gZJ)
Z=QBL! o ,

s=qs | Reff(ij) ~ [|Z(5, — 3,
zl=(@8),

Solve Oflogn) linear systems in L using
fast Laplacian solver solver

learns all pairwise resistances by probing a few
random electrical flows.



Nearly Linear Time

logn X n

Find rows of Z,,,, ., by (_gZJ)
Z=QBL! o ,
si=qs | Reff(ij) ~ [ 25— 3,
zl=(@8),

Solve Oflogn) linear systems in L using
fast Laplacian solver solver

Can show approximate R, suffice.
(only change M by a constant factor)

[



Actual Algorithm

mut undirected graph G = (V,E,w) \
Output: subgraph Hwith L, < Ly < (1 + €))L,

1. Let Qiognxmbe a scaled random projection.

Compute approximate resistance matrix
7Z = QBL*
by solving log n Laplacian systems
2. Repeat the following 9nlogn/e? times:

choose edge e = ij w.p. p,  ||Z(8; — 8;)]|*

k add e to H with weights, = 1/p, /




Actual Algorithm

m)ut undirected graph G = (V,E,w) \
Output: subgraph Hwith L, < Ly < (1 + €))L,

1. Let Qiognxmbe a scaled random projection.

Compute approximate resistance matrix
7Z = QBL*
by solving log n Laplacian systems
2. Repeat the following 9nlogn/e? times:

choose edge e = ij w.p. p,  ||Z(8; — 8;)]|*

K add e to H with weight s, = 1/p, /
+improvements by [Koutis-Levin-Peng’12]




Two Useful Ways to view a Graph

electrical network
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TW. Reff(e) = [|ILY?b, |2 = ||ve||? IPh

electrical network
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Two Useful Tools

Matrix Chernoff Bound
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Advantages over pure combinatorics

There is a global rescaling transformation:

L ~ Ly itt LY PLyL.V? ~ 1

Powerful random matrix tools apply naturally:
1. Matrix Chernoff bound
2. Johnson-Lindenstrauss Lemma



Some Improvements

[Batson-Spielman-5'08]: edges

mlog?n

Koutis-Levin-Peng’12] O ( =
Koutis’14] parallel algorithm
Kapralov, Lee, Musco x2, Sidford’14]

1-pass dynamic streaming algorithm

[Lee-Sun’17]: O(mlog(n)) time with O(n/eps”2)
edges

) running time




Code

http://www.cs.cmu.edu/~jkoutis/SpectralAlgorit
hms.htm

< C | ® www.cs.cmu.edu/~jkoutis/SpectralAlgorithms.htm W = KX

° Apps @ How to Make Pesto @ Spaghetti with Qil ar ﬂ Photos ox 2BHK flat for rent in » Other bookmarks

]

Fast Effective Resistances

An implementation of the Spielman-Srivastava algorithm for the quick computation of
many effective resistances in an electrical resistive network. Effective resistances are
equivalent to commute times of the random walk in the corresponding graph.

The code runs in MATLAB. Authored by Richard Garcia Lebron.

Download Dependence: CMG solver



http://www.cs.cmu.edu/~jkoutis/SpectralAlgorithms.htm

