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Outline

- The 1960s-70s: What can computers compute efficiently?

- The 1990s-: What can computers compute efficiently approximately?

- Two examples of approximation algorithms for the maximum cut problem

- When is it hard to compute efficiently approximately?

« Some concluding thoughts



Some terminology (imprecise)

* “Problem”

- Traditional mathematics usage: e.g. Fermat’s Last Problem

- Computational usage: Find an algorithm (computer program) such that
given any valid input, the desired output is produced.

A decision problem: The output is one of “Yes” or “No”.

Input 1 Algorithm > Qutput




Discrete Optimization
Problems

« Appears in many places: scheduling jobs
on computers, locating facilities, building
networks, stocking inventory,...

* Lots of these formulated as graph
problems.

- Famous example: the traveling salesman
problem (TSP).

+ Given n cities and the distances
between each pair of cities, find the
shortest tour that visits each city once
and returns to the starting point.

 Decision version of TSP: Additional input
of a number C, “Is the length of the
shortest tour at most C?”



The Obvious Finite Algorithm

« Consider all n! possible orderings of the cities and compute the length of the
tour for that ordering. Keep track of the shortest one found.

* Problem: n!/ grows pretty quickly with n. 120! is about 6 x 10198, 1 tour/ns still
Is about 10182 years.



“Good” algorithms

v AMANde (10RR)-

ropiems
One can find many classes of problems, besides maximum matching and its
generalizations, which have algorithms of exponential order but seemingly
none better. An example known to organic chemists is that of deciding whether
two given graphs are isomorphic. For practical purposes the difference hetween
algebraic and exponential order is often more crucial than the difference

between finite and non-finite.
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We say an algorithm is good if there is a polynomial
function f(n) which, for every positive-integer valued
n. is an upper bound on the “amount of work™ the
algorithm does for any input of “size” n. The concept
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N earh edge, I 1§ g4 version or the well-Knnwi
raveling saleman problem |cf. 4]. [ conjecture that
there is no good algorithm for the traveling saleman
problem. My reasons are the same as for any mathe-
matical conjecture: (1) It is a legitimate mathematical
possibility, and (2) I do not know.
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P vs. NP

- Today: polynomial-time algorithms are considered the theoretical measure of
a good, efficient algorithm.

® P s the class of all decision problems solvable by a polynomial-time
algorithm.

e NP is (roughly) the set of all decision problems for which we can “check” in
polynomial time whether the answer is “Yes” (or “No”) if someone gives us a
“proof”.

e (Cook, Levin 1971, Karp 1972) Given a polynomial-time algorithm for the
decision version of the TSP, we can get a polynomial-time algorithm for any

problem in NP,
P = NP?



A 1956 letter from Kurt Godel to John von Neumann

Thr Zustand sich bald noch weiter bessert u. dass die neuesten Errun-

renschaften der Medizin. wenn maelich. 21 einer \'oll:mndmon Heilune
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liberty to write to vou about a mathematical problem your view on it
(" would be of great interest to me: Obviously, it is easy to construct a Tur- )
ing machine that allows us to decide, for each formula F of the restricted
functional calculus® and every natural number n, whether F' has a proof
of length n [length=number of symbols!. Let v*(F,n) be the number of
steps required for the machine to do that, and let p(n) = m%x v(F.n).

The question is, how rapidly does y(n) grow for an optimal machine? It
is possible to show that ¢(n) > An. If there really were a machine with
o(n) ~ Kn (or even just ~ Kn? ) then that would have consequences
of the greatest significance. Namely, this would clearly mean that the
thinking of a mathematician in the case of yes-or-no questions could be
completely’ replaced by machines, in spite of the unsolvability of the
Entscheidungsproblem. n would merely have to be chosen so large that,
when the machine does not provide a result, it also does not make any
sense to think about the problem. Now it seems to me to be quite within
the realm of possibility that o(n) grows that slowly. For 1.) @(n) > Kn
seems to be the only estimate obtainable by generalizing the proof of the
unsolvability of the Entscheidungsproblem; 2.) ¢(n) ~ Kn (or ~ Kn?
just means that the number of steps when compared to pure trial and
error can be reduced fmm N to log N (or log N? ). Such significant re-
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\\hcn computing the quadratxc remainder svmbol by repeated applica-
tion of the law of reciprocity. It would be interesting to know what the
uuuuuuu ssssERRARRRSS case would be, e.g., in determining whether a number is prime, and how
significantly n general for finitist combinatorial problems the number of
Kur t GOdel steps can be reduced when compared to pure trial and error. I do not

; COLLECTED } know whether you have heard that “Post’s problem™ (whether there are
: WORKS E degrees of unsolvability among the problems (3y)g(y, ) with recursive
2 i ¢) was solved positively by a quite young man by the name of Richard
] Kelume V' Eq Friedberg.” The solution is very elegant. Unfortunately, Friedberg is not
3 Caiponiernce [-7. ? going to study mathematics, but rather medicine (seemingly under the
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influence of his father).
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P VS,

NP one of the seven Clay Millenium Problems

@~ Clay Mathematics Institute

- ‘ Dedicated to increasing and disseminating mathematical knowledge

HOME ABOUT CMI PROGRAMS NEWS & EVENTS AWARDS

First Clay Mathematics Institute Millennium Prize
Announced

Prize for Resolution of the Poincaré Conjecture
Awarded to Dr. Grigoriy Perelman

March 18, 2010. The Clay Mathematics Institute (CMI) announces today that
Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the
Millennium Prize for resolution of the Poincaré conjecture. The citation for the
award reads:

The Clay Mathematics Institute hereby awards the Millennium Prize for
resolution of the Poincaré conjecture to Grigoriy Perelman.

More ...
The Millennium Prize Problems

In order to celebrate mathematics in the new millennium, The Clay
Mathematics Institute of Cambridge, Massachusetts (CMI) established seven

Prize Problems. The Prizes were conceived to record some of the most difficult

problems with which mathematicians were grappling at the turn of the second

millenninim:* tn alavate in the raneriniienesce nf the nenaral nithliec the fart that

SCHOLARS PUBLICATIONS

» Birch and Swinnerton-Dyer
Conjecture
» Hodge Conjecture

» Navier-Stokes Equations
» P vs NP

» Poincaré Conjecture
» Riemann Hypothesis

» Yang-Mills Theory

» Rules

» Millennium Meeting Videos




~eview articles
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It’s one of the fundamental mathematical
problems of our time, and its importance
grows with the rise of pawerful computers.

BY LANCE FORTNOW

The Status of

the P versus
NP Problem

WHEN EDITOR-IN-CHIEF MOSHE Vardi asked me to write
this piece for Communications, my first reaction was
arti puld be written in two words:

When [ started graduate school in the mid-1980s,
many believed that the quickly developing area of
circuit complexity would soon settle the Pversus
NP problem, whether every algorithmic problem
with efficiently verifiable solutions have efficiently
computable solutions. But circuit complexity and
other approaches to the problem have stalled and
we have little reason to believe we will see a proof
sepamting P from NP in the near future.

Mm—‘m-a MR ne ———TaeeseseriNaRE

Communications of the ACM, Sept. 2009

The softwa=e written for this (lustratien
makes a stylized varsion of 2 network graph
that draws connections between elemants
based on proximity. The graph constantly

chanpes as the elements sart themselves.

incracsed, the cost of computing has
dramnativally deereased, ot to men-
tion the power of the Internet. Com-
putation has becomne a stancard tocl
in jus® ahaut every academic field.
VWhole subficlds of blology. chemis-
try, physies, ecaonomics and orhers are
devoted w0 large-ceale computational
modeling, simulations, and problem
solking

As we solwe laryrer and :nore coin-
plex preblems with greater eomputa-
tonal power and cleverer algorithms,
the problems we cannot tackle begin
to stand cut. 'The theory of NI-com-
pleteness helps us anderstand these
limitations and zh¢ Pversus NP prob-
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SO what now?

* One possible response for discrete optimization problems: polynomial-time algorithms to find
near optimal solutions.

* An a-approximation algorithm is a polynomial-time approximation algorithm that produces
solutions within a factor of a of the optimal.

- E.g. A 3/2-approximation algorithm for the TSP would find a tour of length at most 3/2
times the length of the shortest tour.

- For maximization problems, assume a < 1; a 1/2-approximation algorithm finds a solution
whose value is at least 1/2 that of an optimal solution.

- Can consider randomized algorithms, in which case we want the expected value of the
solution to be within a of optimal.

- Significant amount of work on a wide range of problems; will choose just one as an example.



The maximum cut
problem

- Given an undirected graph
G=(VE), find a set S of vertices
that maximizes the number of
edges with exactly one
endpoint in S (edges in the cut).

* As with the traveling salesman
problem, a polynomial-time
algorithm for this problem
would imply P=NP.

* There is a polynomial-time
algorithm if the graph is planar.




Applications

- A few, when each edge has a weight,
and we want to find a cut of
maximum total weight

 Finding minimal energy state of
Ising spin glass model

* Minimizing number of ‘vias’ drilled
in two-sided printed circuit board.

- Barahona, Grotschel, Jinger, Reinert
(1988)

- But some weights will be negative.

flll.
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Heim et al, Science, 2015




A randomized approximation
algorithm (Erdds 1967)

 Choose set of vertices S
uniformly at random.

- Then probability that any given
edge is in the cut is 1/2.

« Thus expected number of
edges in the cut is 1/2 |E],
which is at least half the
optimal value.




An alternate approach (Goemans, W 1995)

« Suppose we introduce an n-dimensional unit vector v; (where n=|V|) for each
vertex ieV and we ask for

1
max o Z (1 —v; - v;)
(4,5)€E

with either vi=(-1,0,0,...) or vi=(1,0,0,...) for each ieV.

- Then if we set S={ieV: vi=(-1,0,0,...) }, the number of edges in the cut is

() eB vi#vll=5 3 (1-v-v)

(4,7)EE:v;#v;

% > (—wi-v))

(,5)€E



A relaxation

- We can solve the following in
polynomial time

1
max o Z (1 —v;-vy)

(4,5) € E

If the vectors are arbitrary n-
dimensional unit-length vectors
(via semidefinite programming).

* Note that if OPT is the number
of edges in the cut in an
optimal solution, and Z is the
quantity above, Z = OPT.



Getting a solution

- We draw a random n-
dimensional vector r from the
multivariate normal distribution
(i.e. each component r; from
N(0,1)). Let this be the normal
to a hyperplane through the
origin of the unit sphere.

« Let S={ieV:vi-r=0}.

- What is expected number of
edges in this cut?




Probability that edge (i,)) Is in the cut

Vj

- Consider the plane containing vectors v; and vj, and the projection of random
vector r to this plane.

- Of the 21t possible orientations of the projected random vector, 26 of them
correspond to v; and v; on opposite sides of the hyperplane (and hence edge
(i.j) in the cut). So the probability is

20 60 1
— = — = — arccos(v; - v;)
2r mow

since v; - v = ||v;||||v;]| cos @ = cos 6.



F(x)=1/pi * acos(x) Y
g(x)=.5 = (1-x)

~ arccos(z)

= Inin
—1<z<1 (1 — x)

> 878956



The analysis

Then the expected number of edges in the cut is

1 1
Z - arccos(vz- - vj) > .87856 - 9 Z (1 — Ui Uj)

(2,J)EE (i,j)EE
87856 - /4
87856 - OPT.

IV

This gives us a .87856-approximation algorithm for the maximum cut
problem.



Another problem

« Graph coloring: Find the minimum number of colors to assign to nodes such
that each edge has differently colored endpoints.

 This graph is 3-colorable: Can assign 3 colors to the nodes.



More vectors

 Can solve the following in
polynomial time for arbitrary n- O
dimensional unit vectors:

min max v; - v;
(¢,J)€E

/

- If the graph is 3-colorable, then O
solution is at most -1/2; in
general, if the graph is k-
colorable, then there is a
solution of at most -1/(k-1).



Analysis

- Draw t random vectors, and give node one of 2t colors, one for each possible
way of being above/below the t random hyperplanes.

- The probability of two nodes joined by edge being on the same side of one
random hyperplane is at most

0 _ 1
=2 =3

- So the probability of two nodes joined by an edge being on the same side of t
random hyperplanes is

» For good choice of t, can color 3-colorable graph with O(n-387) colors (Karger,
Motwani, Sudan 1998)



Recent work

- Kawarabayashi and Thorup (2017) can color a 3-colorable graph with
O(n1-9996) colors.



What can computers compute approximately
efficiently”?

- A little hard to say, when we don’t even know what is computable in
polynomial time.

- However, there is a significant line of work showing that for a particular

problem, if there is an a-approximation algorithm for a particular a, then
P=NP.

* Huge breakthrough in the early 1990s showing this for a wide range of
problems; many improvements since then.



—Xample

- Hastad (1996) considers the problem of maximizing the number of satisified
equations of three variables over GF[2]; e.qg.

r1 + x3 + 9 = 0(mod 2)

Tro + x3 + 15 = 1(mod 2)

r1 + 7 + 12 = 0(mod 2)

- Hastad shows that if there is any (1/2 + €)-approximation algorithm for
constant € > 0, then P = NP.

- But there is a very simple 1/2-approximation algorithm!



What about the maximum cut problem®?

« Bellare, Goldreich, Sudan 1998 and Trevisan, Sorkin, Sudan, W 2000 show
how to translate the previous result into one for the maximum cut problem.

X2

X1

- Show that there is no (16/17+¢€)-approximation algorithm for € > 0 unless P =
NP. (16/17 = 0.941).



The 2000s: The Unigue Games Problem and the
Unigue Games Conjecture

- The unique games problem: For a parameter k, find values of x; € {0, ..., k-1}
to maximize the number of satisfied difference equations mod k. E.g.

rs5 — 3 = 3(mod 21)
r3 — o = 2(mod 21)
L19 — Iy = 15(H10d 21)



The Unigue Games
Conjecture

« The conjecture was formulated
by Subhash Khot in 2002.

- Conjecture: If P£NP, then for all
6 > 0, there exists a k such that
In polynomial time it is not
possible to distinguish between
sets of difference equations
mod k in which at least a 1-6
fraction of the equations are
satisfiable, and those for which
at most a o fraction are
satisfiable.




SOme consequences

- If the conjecture is true, then there is no (a+¢&)-approximation algorithm for the
maximum cut problem for any constant € > 0 unless P = NP (Khot, Kindler,
Mossel, O’Donnell 2007; Mossel, O’Donnell, Oleszkiewicz 2008), where

~ arccos(z)

> .87856

= min
~1<e<t (1 —x)

- If the conjecture is true, then for every maximum constraint satisfaction
problem there is a (p-g)-approximation algorithm, and there can be no (p+¢€)-
approximation algorithm unless P=NP (Raghavendra 2008; Raghavendra,
Steurer 2009).

- If a variant of the conjecture is true, then it is as hard as any problem in NP to
color a 3-colorable graph with k colors for any constant k (Dinur, Mossel,
Regev 2009).



Some open guestions

+ Resolve the Unique Games Conjecture.

- How well can the Traveling Salesman Problem be approximated for cities in a
general metric space?

« Long known: A 1.5-approximation algorithm (Christofides 1976)

« Not so recently: In Euclidean plane, given any € > 0, there is a (1 + €)-
approximation algorithm (Arora 1998, Mitchell 1999).

« Recent: A 1.4-approximation algorithm for a special case of metric spaces
(Mémke, Svensson 2016; Sebo, Vygen 2014).

« No (a-g)-approximation algorithm for a=123/122 and € > 0 unless P = NP.



Some open questions

- What else can be done with these vector representations of graphs?

- Finding a sparse cut in a graph (Arora, Rao, Vazirani 2009)



A critigue?

« Perhaps too much of a gap between polynomial time as a theoretical measure
of efficiency and computational realities?

« Edmonds (1965)

1 ~

S ~ten and nnn-‘;n:‘:

It would be unfortunate for any rigid criterion to inhibit the practical
development of algorithms which are either not known or known not to con- I
form nicely to the criterion. Many of the best algorithmic ideas known today
would suffer by such theoretical pedantry. In fact, an outstanding open
question is, essentially: “how good" is a particular algorithm for linear pro-
gramming, the simplex method? And, on the other hand, many important
algorithmic ideas in electrical switching theory are obviously not “good’ in
our sense,
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Conclusions

- Computational work in solving particular instances of hard discrete
optimization problems has been remarkable. Perhaps we need a better
theory to capture this reality?

- More nuanced notion of efficient computation than polynomial time?

« Some notion of ‘real-life’ instances of problems (such as TSP)?



Conclusions

“Or who shut in the sea with doors,
when it burst out from the womb,
when | made clouds its garment
and thick darkness its swaddling band,
and prescribed limits for it
and set bars and doors,
and said, ‘Thus far shall you come, and no farther,
and here shall your proud waves be stayed’?”
-- Job 38:8-11

- We’ve come a long way in understanding the power of efficient approximate
computation for discrete optimization.

- But it is all relative to our understanding of efficient computation.



