
Genomics,	Graphs	and	the	GraphBLAS

Aydın	Buluç
Computational	Research	Division,	LBNL
EECS	Department,	UC	Berkeley

Graphs	Across	Domains Workshop
Berkeley	Institute	of	Data	Science
March	27,	2018

Outline

• Constructing genetic linkage maps and its
graph theoretical formulations

• (Protein) sequence similarity graphs and their
clustering

• GraphBLAS: Linear-algebraic building blocks for
graph algorithms

Genetic mapping with millions of markers

AP13 VS16

X

F1	recombinants	track	“orange”	vs “yellow”	in	offspring
Chapman, J.A., Mascher, M., Buluç, A., Barry, K., Georganas, E., … Rokhsar, D., 2015. A whole-genome
shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome biology

𝑖" 𝑖# 𝑖$ 𝑖% 𝑖& 𝑖'

𝑚" A B - - A -

𝑚# A B A A B A

𝑚$ A A - - - B

𝑚% A - B - B B

𝑚& B - B A - A

𝑚' A A B A - -

𝑚) - - - A B B

𝑚* A B A B - A

𝑚+ A B - B - -

𝑚", B B B - A A

𝑚"" A A A A B B

𝑚"# B - A B A -

𝑚"$ B B - A A -

𝑚"% - - - B A A

𝑚"& B - - A A B

(missing	data)

𝑚"

𝑚#

𝑚* 𝑚+

𝑚"&

𝑚$

𝑚%

𝑚&
𝑚'

𝑚)
𝑚",

𝑚""𝑚"#

𝑚"$ 𝑚"%

𝑚*

𝑚"&

𝑚#

𝑚"

𝑚+

𝑚$
𝑚'

𝑚"#

𝑚",

𝑚%

𝑚)

𝑚"$

𝑚&

𝑚""𝑚"%

Linkage	group	1 Linkage	group	2

cluster

order

Linkage	group	1 Linkage	group	2

Data

Genetic mapping: 2010s motivation

Fierst, Janna L. "Using linkage maps to correct and scaffold de novo genome assemblies:
methods, challenges, and computational tools." Frontiers in genetics 6 (2015): 220.

Linkage	disequilibrium	makes	map	
construction	feasible	

• Genetic maps are constructed by recombination frequencies.
• Markers (think of single nucleotide polymorphisms – or SNPs –

for simplicity) that are physically close to each other are less likely
to segregate during meiosis.

M = markers, P = size of offspring (MxP Matrix)
Procedure:
1. Clustering for linkage groups
2. Marker ordering within groups
3. Genetic distance estimation

Traditional approach first computes all
marker pairwise similarities O(M2)

m15
m2

m1
m8

m9

m14

m13

m7 m4

m10

m5

m3
m11
m16
m12

Graph Problems in Genetic Mapping #1

• Linkage group construction is traditionally done via single-
linkage clustering
• Naïve O(M2) computation, metric tricks don’t seem to

apply due to the use of LOD score for distance.
• Bubblecluster helps reduce this to O(M log(M))

• Main idea: Clusters have a “quasi-linear structure”
• Linear as they represent chromosomes
• Quasi because of sequencing errors and missing data

!

"# "$ "% "&
"' "(")

Strnadova, V., Buluç, A., Chapman, J., Gilbert, J.R., Gonzalez, J., Jegelka, S., Rokhsar, D. and Oliker, L.,
2014. Efficient and accurate clustering for large-scale genetic mapping. In BIBM

Graph Problems in Genetic Mapping #2

• Ordering step is naively a Travelling Salesman Problem (TSP)
• Not feasible for many markers; but the marker count does not

dictate the complexity, distinguishable markers (a.k.a. bins)
do. The latter is limited by population size.

• Even then, TSP is overkill.
• MSTMap exploits the 2-approximation of minimum spanning

tree to TSP

Wu, Yonghui, et al. "Efficient and accurate construction of genetic linkage maps from the minimum
spanning tree of a graph." PLoS genetics 4.10 (2008):

Graph Problems in Genetic Mapping #3

• Integrating two genetic/physical/optical maps
• What to do when two genetic maps differ?

• Identify strongly
connected
components
(SCCs).

• Contract them into
supervertices

• Rest of the graph
has consistent
ordering

Yap, I.V., Schneider, D., Kleinberg, J., Matthews, D., Cartinhour, S. and McCouch, S.R., 2003. A graph-
theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics

Outline

• Constructing genetic linkage maps and its graph
theoretical formulations

• (Protein) sequence similarity graphs and their
clustering

• GraphBLAS: Linear-algebraic building blocks for
graph algorithms

Identifying	protein	families

11

q A	protein	family:	group	of	proteins	that	share	a	common	
evolutionary	origin,	reflected	by	their	related	functions	and	
similarities	in	sequence	or	structure

q Desired	scale:	10s	of	billions	of	genes/proteins,	trillions	of	
nonzero	pairwise	similarities

Input:	pairwise	similarities	
between	proteins	(Sparse)

Output:	clusters	of	
similar	proteins

Markov	Cluster	(MCL)	Algorithm

12

q MCL	simulates	random	walks	in	a	graph

q One	of	the	most	popular algorithms	in	community	
for	finding	protein	families	from	sequence	data

Stijn van	Dongen,	Graph	Clustering	by	Flow	Simulation.	PhD	thesis,	University	of	Utrecht,	May	2000

Apeltsin,	Leonard,	et	al.	"Improving	the	quality	of	protein	similarity	network	clustering	algorithms	using	
the	network	edge	weight	distribution." Bioinformatics 27.3	(2010):	326-333.

Brohee,	S.	and	Van	Helden,	J.,	2006.	Evaluation	of	clustering	algorithms	for	protein-protein	interaction	
networks. BMC	bioinformatics

“…but MCL continued to outperform all other algorithms after a threshold was
applied. As a result, we believe researchers may now more confidently use the
time-efficient MCL clustering technique for most of their protein sequence analysis
needs.”

“This analysis shows that MCL is remarkably robust to graph alterations…”

Markov Cluster Algorithm (MCL)

13

Iteration	1 Iteration	2 Iteration	3Initial	network

Widely	popular	and	successful	algorithm	for	discovering	
clusters	in	protein	interaction	and	protein	similarity	networks

At	each	iteration:
Step	1	(Expansion):	Squaring	the	matrix	while	

pruning	(a)	small	entries,	(b)	denser	columns
Naïve	implementation:	sparse	matrix-matrix	product	(SpGEMM),	
followed	by	column-wise	top-K	selection	and	column-wise	pruning
Step	2 (Inflation)	:	taking	powers	entry-wise

HipMCL: High-performance MCL

MCL	process	is	both	computationally	expensive	and	memory	
hungry,	limiting	the	sizes	of	networks	that	can	be	clustered

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

• HipMCL overcomes	such	limitation	via	sparse	parallel	algorithms.	
• Up	to	1000X	times	faster than	original	MCL	with	same	accuracy.	
• Easily	clusters	a	network	of	~75M	nodes	with	~68B	edges	in	~2.4	

hours	using	~2000	nodes	of	Cori/NERSC.

A.	Azad,	G.	Pavlopoulos,	C.	Ouzounis,	N.	Kyrpides,	A.	Buluç; HipMCL:	a	high-performance	parallel	
implementation	of	the	Markov	clustering	algorithm	for	large-scale	networks, Nucleic	Acids	Research,	2018

Outline

• Constructing genetic linkage maps and its graph
theoretical formulations

• (Protein) sequence similarity graphs and their
clustering

• GraphBLAS: Linear-algebraic building blocks
for graph algorithms

The	GraphBLAS effort

• The GraphBLAS Forum: http://graphblas.org
• IEEE Workshop on Graph Algorithms Building Blocks (at IPDPS):

http://www.graphanalysis.org/workshop2018.html

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is
a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

Purpose	of	GraphBLAS

• Combinatorial	graph	algorithms,	such	as	those	involving	graph	
traversals,	did	not	map	well	to	existing	hardware	and	did	not	
parallelize	well.

• GraphBLAS is	about	making	such	traversal-based	and	other	
combinatorial	graph	algorithms	faster

• Its	primary	motivation	and	drive	is	not	spectral	methods
• Instead,	GraphBLAS examples	include	betweenness centrality,	

Markov	clustering,	breadth-first	search,	maximal	independent	
sets,	PageRank,	triangle	counting,	bipartite	graph	matching,	
graph	ordering, and	connected	components.

• The	vision	for	linear-algebraic	graph	algorithms	(there	is	a	SIAM	
book	for	that)	and	several	high	performance	systems	based	on	
the	idea	existed	(Combinatorial	BLAS,	GraphMat,	GPI).

• Standardization	is	to	avoid	divergence	of	APIs.

A.Buluç,	T.	Mattson,	S.	McMillan,	J.	Moreira,	C.	Yang.	“The	GraphBLAS C	API	Specification”,	version	1.1

1
2

3

4 7

6

5

AT

1

7

71
from

to

Breadth-first	search	
using	matrix	algebra

1
2

3

4 7

6

5

XAT

1

7

71
from

to

ATX

à

1

1

1

1

1parents:

Replace	scalar	operations
Multiply	->		select
Add	->	minimum

1
2

3

4 7

6

5

X

4

2

2

AT

1

7

71
from

to

ATX

à

2

4

4

2

24

Select	vertex	with
minimum label	as	parent

1

1parents:
4

2

2

1
2

3

4 7

6

5

X

3

AT

1

7

71
from

to

ATX

à
3

5

7

3

1

1parents:
4

2

2

5

3

XAT

1

7

71
from

to

ATX

à

6

1
2

3

4 7

6

5

B.2 Example: BFS in GraphBLAS using apply

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”

6

7 i n t 3 2 t l e v e l = 0 ; // l e v e l = depth in BFS t ra v e r s a l , roo t s=1, unv i s i t e d=0

8 void r e t u r n l e v e l (void ⇤out , const void ⇤ in) {
9 bool element = ⇤(bool ⇤) in ;

10 ⇤(i n t 3 2 t ⇤) out = l e v e l ;

11 }
12

13 /⇤
14 ⇤ Given a boolean n x n adjacency matrix A and a source v e r t e x s , performs a BFS t r a v e r s a l

15 ⇤ o f the graph and s e t s v [i] to the l e v e l in which ve r t e x i i s v i s i t e d (v [s] == 1) .

16 ⇤ I f i i s not reacheab l e from s , then v [i] = 0. (Vector v shou ld be empty on input .)

17 ⇤/
18 GrB Info BFS(GrB Vector ⇤v , const GrB Matrix A, GrB Index s)

19 {
20 GrB Index n ;

21 GrB Matrix nrows(&n ,A) ; // n = # of rows o f A

22

23 GrB Vector new (v , GrB INT32 , n) ; // Vector<i n t 32 t> v (n) = 0

24

25 GrB Vector q ; // v e r t i c e s v i s i t e d in each l e v e l

26 GrB Vector new(&q ,GrB BOOL, n) ; // Vector<bool> q (n) = f a l s e

27 GrB Vector setElement (q , (bool) true , s) ; // q [s] = true , f a l s e everywhere e l s e

28

29 GrB Monoid Lor ; // Logica l�or monoid

30 GrB Monoid new(&Lor ,GrB LOR, f a l s e) ;

31

32 GrB Semiring Boolean ; // Boolean semiring

33 GrB Semiring new(&Boolean , Lor ,GrB LAND) ;

34

35 GrB Descr iptor desc ; // Descr ip tor f o r vxm

36 GrB Descriptor new(&desc) ;

37 GrB Desc r ip tor se t (desc ,GrB MASK,GrB SCMP) ; // i n v e r t the mask

38 GrB Desc r ip tor se t (desc ,GrB OUTP,GrB REPLACE) ; // c l e a r the output b e f o r e assignment

39

40 GrB UnaryOp app l y l e v e l ;

41 GrB UnaryOp new(&app l y l e v e l , r e t u r n l e v e l , GrB INT32 ,GrB BOOL) ;

42

43 /⇤
44 ⇤ BFS t r a v e r s a l and l a b e l the v e r t i c e s .

45 ⇤/
46 l e v e l = 0 ;

47 GrB Index nva l s ;

48 do {
49 ++l e v e l ; // next l e v e l (s t a r t wi th 1)

50 GrB apply (⇤v ,GrB NULL,GrB PLUS INT32 , app l y l e v e l , q ,GrB NULL) ; // v [q] = l e v e l

51 GrB vxm(q ,⇤ v ,GrB NULL, Boolean , q ,A, desc) ; // q [! v] = q | | .&& A ; f i n d s a l l the

52 // unv i s i t e d succe s sor s from current q

53 GrB Vector nvals (&nvals , q) ;

54 } while (nva l s) ; // i f t he re i s no succes sor in q , we are done .

55

56 GrB free(&q) ; // q vec to r no longer needed

57 GrB free(&Lor) ; // Log ica l or monoid no longer needed

58 GrB free(&Boolean) ; // Boolean semiring no longer needed

59 GrB free(&desc) ; // de s c r i p t o r no longer needed

60

61 return GrB SUCCESS ;

62 }

183

Breadth-First	Search	in	GraphBLAS

GraphBLAS C	API	Spec	(http://graphblas.org)

• Goal:	A	crucial	piece	of	the	GraphBLAS effort	is	to	translate	the	mathematical	
specification	to	an	actual	Application	Programming	Interface	(API)	that	
i. is	faithful	to	the	mathematics	as	much	as	possible,	and
ii. enables	efficient	implementations	on	modern	hardware.	

• Impact:	All	graph	and	machine	learning	algorithms	that	can	be	expressed	in	the	
language	of	linear	algebra

• Innovation:	Function	signatures	(e.g.	mxm,	vxm,	assign,	extract), parallelism	constructs	
(blocking	v.	non-blocking),	fundamental	objects	(masks,	matrices,	vectors,	descriptors),	a	
hierarchy	of	algebras	(functions,	monoids,	and	semiring)

Aydin	Buluc,	Timothy	Mattson,	Scott	McMillan,	Jose	Moreira,	and	Carl	Yang.		Design	of	the	GraphBLAS API	for	
C.	In	Intl.	Parallel	&	Distributed	Processing	Symposium	Workshops	(IPDPSW),	2017.

GrB_info GrB_mxm(GrB_Matrix *C, // destination

const GrB_Matrix Mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B

[, const Descriptor desc]);

C(¬M)	⊕=	AT ⊕.⊗ BT

Parallel	algorithms	for	sparse-matrix- sparse	matrix	
multiplication	(SpGEMM)

• Goal:	More	scalable	SpGEMM	algorithms	in	shared	and	distributed-memory
• Applications:	Algebraic	multigrid	(AMG)	restriction,	graph	computations,	quantum	

chemistry,	data	mining,	interior-point	optimization
• Algorithmic	innovations: (1)	Novel	shared-memory	kernel	for	in-node	parallelism,	(2)	

Split-3D-SpGEMM:	an	efficient	implementation	of	communication-avoiding	SpGEMM
• Performance:	Split-3D-SpGEMM	with	new	shared-memory	kernel	(red)	beats	old	

state-of-the-art	(blue)	by	8X	at	large	concurrencies

64 256 1024 4096 163840.25

1

4

16

Number of Cores

Ti
m

e
(s

ec
)

nlpkkt160 x nlpkkt160 (on Edison)

2D (t=1)
2D (t=3)
2D (t=6)
3D (c=4, t=1)
3D (c=4, t=3)
3D (c=8, t=1)
3D (c=8, t=6)
3D (c=16, t=6)

2D
#threads

increasing

3D
#layers &
#threads

 increasingA::1$

A::2$

A::3$

n pc
Al
lto

Al
l%

Al
lto

Al
l%

C int
ijk = Ailk

l=1

p/c

∑ Bljk

A$ B$ Cintermediate$ Cfinal%

x$

x$

x$

=$

=$

=$

!$

!$

!$

A.	Azad,	G.	Ballard,	A.	Buluç,	J.	Demmel,	L.	Grigori,	O.	Schwartz,	S.	Toledo,	S.	Williams.	Exploiting	multiple	levels	of	
parallelism	in	sparse	matrix-matrix	multiplication.	SIAM	Journal	of	Scientific	Computing	(SISC),	2016.	

Betweenness Centrality

Definition:
CB(v): Among all the shortest paths,
what fraction of them pass through
the node of interest?

𝜎st is the number of shortest paths
between vertices s and t

𝜎st (v) is the number of such paths
that pass through vertex v

• APSP is wasteful for sparse graphs
• Brandes’ algorithm is O(mn) for unweighted graphsFor Peer Review

BC(v) =
∑

s̸=v ̸=t∈V

σst(v)

σst

(1)

A vertex v with a high betweenness centrality is therefore an important one based on at least

two different interpretations. From the point of view of other vertices, it is a highly sought-after

hop for reaching others as quickly as possible. The second possible interpretation is that v itself is

the best-situated vertex to reach others as quickly as possible.

The second reason for presenting the betweenness centrality as a success metric is its quan-

tifiability. It is part of the HPC Scalable Graph Analysis Benchmarks (formerly known as the

HPCS Scalable Synthetic Compact Applications #2 (Bader et al.)) and various implementations

on different platforms exist (Bader and Madduri 2006a; Madduri et al. 2009; Tan et al. 2009) for

comparison.

5.2 BC Algorithm and Experimental Setup

We compute betweenness centrality using the algorithm of Brandes (2001). It computes single

source shortest paths from each node in the network and increases the respective BC score for nodes

on the path. The algorithm requires O(nm) time for unweighted graphs and O(nm+n2 log n) time

for weighted graphs, where n is the number of nodes and m is the number of edges in the graph. The

sizes of real-world graphs make the exact O(nm) calculation too expensive, so we resort to efficient

approximations. Bader et al. (2007) propose an unbiased estimator of betweenness centrality that

is based on sampling nodes from which to compute single-source shortest paths. The resulting

26

Page 27 of 46

http://mc.manuscriptcentral.com/ijhpca

International Journal of High Performance Computing Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Driver: Multiple-source	
breadth-first	search

• Sparse array representation => space efficient
• Sparse matrix-matrix multiplication => work efficient
• Three possible levels of parallelism: searches, vertices, edges
• Highly-parallel implementation for Betweenness Centrality*

*:	A	measure	of	influence	in	graphs,	based	on	shortest	paths

BAT

à

AT � B
6

1 2

3

4 7 5

Forward	sweep	of	BC	in	GraphBLAS	C	API

#include "GraphBLAS.h"

GrB_Info BC_update(GrB_Vector *delta, GrB_Matrix A, GrB_Index *s, GrB_Index nsver)
{

GrB_Index n;
GrB_Matrix_nrows(&n, A); // n = # of vertices in graph
GrB_Vector_new(delta,GrB_FP32,n); // Vector<float> delta(n)
GrB_Monoid Int32Add; // Monoid <int32_t,+,0>
GrB_Monoid_new(&Int32Add,GrB_INT32,GrB_PLUS_INT32,0);
GrB_Semiring Int32AddMul; // Semiring <int32_t,int32_t,int32_t,+,*,0>
GrB_Semiring_new(&Int32AddMul,Int32Add,GrB_TIMES_INT32);

GrB_Descriptor desc_tsr; // Descriptor for BFS phase mxm

GrB_Descriptor_new(&desc_tsr);
GrB_Descriptor_set(desc_tsr,GrB_INP0,GrB_TRAN); // transpose of the adjacency matrix
GrB_Descriptor_set(desc_tsr,GrB_MASK,GrB_SCMP); // structural complement of the mask
GrB_Descriptor_set(desc_tsr,GrB_OUTP,GrB_REPLACE); // clear output before result is stored

// index and value arrays needed to build numsp
GrB_Index *i_nsver = malloc(sizeof(GrB_Index)*nsver);
int32_t *ones = malloc(sizeof(int32_t)*nsver);
for(int i=0; i<nsver; ++i) {

i_nsver[i] = i;
ones[i] = 1;

}
…

Forward	sweep	of	BC	in	GraphBLAS	C	API

…
GrB_Matrix numsp; // Its nonzero structure holds all vertices that have been discovered
GrB_Matrix_new(&numsp, GrB_INT32, n, nsver); // also stores # of shortest paths so far

GrB_Matrix_build(&numsp,GrB_NULL,GrB_NULL,s,i_nsver,ones,nsver,GrB_PLUS_INT32,GrB_NULL);
free(i_nsver); free(ones);

GrB_Matrix frontier; // Holds the current frontier where values are path counts.
GrB_Matrix_new(&frontier, GrB_INT32, n, nsver); // Initialized: neighbors of each source
GrB_extract(&frontier,numsp,GrB_NULL,A,GrB_ALL,n,s,nsver,desc_tsr);

// The memory for an entry in sigmas is only allocated within the do-while loop if needed
GrB_Matrix *sigmas = malloc(sizeof(GrB_Matrix)*n); // n is an upper bound on diameter
int32_t d = 0; // BFS level number
int32_t nvals = 0; // nvals == 0 when BFS phase is complete
do { // --------------------- The BFS phase (forward sweep) ---------------------------

GrB_Matrix_new(&(sigmas[d]), GrB_BOOL, n, nsver);
// sigmas[d](:,s) = d^th level frontier from source vertex s

GrB_apply(&(sigmas[d]),GrB_NULL,GrB_NULL,GrB_IDENTITY_BOOL,frontier,GrB_NULL);
GrB_eWiseAdd(&numsp,GrB_NULL,GrB_NULL,Int32Add,numsp,frontier,GrB_NULL);
// numsp += frontier (accum path counts)

GrB_mxm(&frontier,numsp,GrB_NULL,Int32AddMul,A,frontier,desc_tsr);
// f<!numsp> = A' +.* f (update frontier)
GrB_Matrix_nvals(&nvals,frontier)
d++;

} while (nvals);
…

Forward	sweep	of	BC	in	GraphBLAS	C	API

…
GrB_Matrix numsp; // Its nonzero structure holds all vertices that have been discovered
GrB_Matrix_new(&numsp, GrB_INT32, n, nsver); // also stores # of shortest paths so far

GrB_Matrix_build(&numsp,GrB_NULL,GrB_NULL,s,i_nsver,ones,nsver,GrB_PLUS_INT32,GrB_NULL);
free(i_nsver); free(ones); |

GrB_Matrix frontier; // Holds the current frontier where values are path counts.
GrB_Matrix_new(&frontier, GrB_INT32, n, nsver); // Initialized: neighbors of each source
GrB_extract(&frontier,numsp,GrB_NULL,A,GrB_ALL,n,s,nsver,desc_tsr);

// The memory for an entry in sigmas is only allocated within the do-while loop if needed
GrB_Matrix *sigmas = malloc(sizeof(GrB_Matrix)*n); // n is an upper bound on diameter
int32_t d = 0; // BFS level number
int32_t nvals = 0; // nvals == 0 when BFS phase is complete
do { // --------------------- The BFS phase (forward sweep) ---------------------------

GrB_Matrix_new(&(sigmas[d]), GrB_BOOL, n, nsver);
// sigmas[d](:,s) = d^th level frontier from source vertex s

GrB_apply(&(sigmas[d]),GrB_NULL,GrB_NULL,GrB_IDENTITY_BOOL,frontier,GrB_NULL);
GrB_eWiseAdd(&numsp,GrB_NULL,GrB_NULL,Int32Add,numsp,frontier,GrB_NULL);
// numsp += frontier (accum path counts)

GrB_mxm(&frontier,numsp,GrB_NULL,Int32AddMul,A,frontier,desc_tsr);
// f<!numsp> = A' +.* f (update frontier)
GrB_Matrix_nvals(&nvals,frontier)
d++;

} while (nvals);
…

• The	GrB_mxm call	forms	the	next	frontier	in	one	step	by	both	
expanding	the	current	frontier	(i.e.,	discovering	the	1-hop	neighbors	of	
the	set	of	vertices	in	the	current	frontier)	and	pruning	the	vertices	that	
have	already	been	discovered.	

• The	former	is	achieved	by	setting	the	descriptor,	desc_tsr,	to	use	the	
transpose	of	the	adjacency	matrix.	The	latter	is	achieved	by	setting	the	
descriptor	to	use	the	structural	complement	of	the	mask	and	by	
passing	the	numsp matrix	as	the	mask	parameter.	

• The	implicit	cast	of	numsp to	Boolean	allows	GrB_mxm to	interpret	
numsp as	the	set	of	previously	discovered	vertices.	

• Note	that	the	descriptor	is	also	set	to	GrB_REPLACE to	ensure	that	the	
frontier	is	overwritten	with	new	values.

Conclusions

• GraphBLAS enables one to efficiently cast graph algorithms
and machine learning methods into the languages of sparse
matrices

• While elegant and efficient for problems that fit into the linear
algebra framework, it is admittedly not fully universal.

• The standard definition by the C API group and a compliant
implementation by Tim Davis available at
http://graphblas.org

• More parallel implementations in the works. Currently one
can use approximate GraphBLAS implementations from
Combinatorial BLAS, Kokkos, and Cyclops Tensor
Framework.

