N

f(rrreee Im

BERKELEY LAB

Genomics, Graphs and the GraphBLAS

Aydin Bulug¢
Computational Research Division, LBNL
EECS Department, UC Berkeley

Graphs Across Domains Workshop
Berkeley Institute of Data Science —

Outline

« Constructing genetic linkage maps and its
graph theoretical formulations

* (Protein) sequence similarity graphs and their
clustering

« GraphBLAS: Linear-algebraic building blocks for
graph algorithms

Genetic mapping with millions of markers

= S Nl g pa——

\ QAP13 / \Q wV516w Q/
TN TN TN
[]
iy, iy, iy,

F1 recombinants track “orange” vs “yellow” in offspring

Chapman, J.A., Mascher, M., Bulug, A., Barry, K., Georganas, E., ... Rokhsar, D., 2015. A whole-genome
shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome biology

Data

2

i3

Ly

is

m |A|B|-]|-|A]-
m, | A|B|A|A|B]|A
ms |A|A|-|-|-1]B8B
mg | A|-|B|-|B]|B
ms|B|-|B|A]|-|A
mg | A|A|B|A]| -

m,| -|-|-|A|B]|B
mg| A|B|A|B]|-]A
mg | A|B| - | B -
mo| B|B|B|-|A]|A
mq. A|A|A|A|[B]|B
mqyy| B A B A -
mys| BB | - | A|A[| -
Mmy4 -l - B|lA|A
mgs| B| - | -|A|[A]|B

(missing data)

Linkage group 1

Linkage group 1

Linkage group 2

1apJo

+Mys

--m9
--m8

Linkage group 2

Genetic mapping: 2010s motivation

-~ Repeats \‘
A A R \ D B Identify misjoins
s - | — - — =ﬂ= Resolve
Heterozygosity —» C2 Give small heterozygosity
Shotgun sequences c2 ' R
Sequence genomic context
and
Assemble
B R Cc1
z Yy A J
Mis-join A R B R ¢1 R D
B R D “
Heterozygosity [—
c2 R C L A 4 L 2 Y)
b Small _, B2 Marker 1234 5 6 78910 11 12
= ragment” EEE
D E
Parents Marker
F_1 x Parent MMMMMM M1 2% No
12345¢6 M E. recombination
1AABBAB 5 to distinguish
Missing marker order
F_1 2AABBAA data
BC_1 affects
W 3BBAABB estimation M2
.g of
= 4 A A order —t
v C 5A ABB B spacing —r"— M4
H nﬂp_;; 6ABA A B M6
788 B A
Linkage Linkage
8BBAA B Group 1 Group 2

Fierst, Janna L. "Using linkage maps to correct and scaffold de novo genome assemblies:
methods, challenges, and computational tools." Frontiers in genetics 6 (2015): 220.

Linkage disequilibrium makes map

construction feasible

« Genetic maps are constructed by recombination frequencies.

« Markers (think of single nucleotide polymorphisms — or SNPs —
for simplicity) that are physically close to each other are less likely
to segregate during meiosis.

M = markers, P = size of offspring (MxP Matrix)

Procedure: RILS: 5 10 15 20 25 MARKERS :
1. Clustering for linkage groups
2. Marker ordering within groups .
3. Genetic distance estimation
Physical Map Genetic Map 10
fight ick matk gives

450 - geneticlocation of gene A
physical location P . .
of gene A left tck marks‘gwe

500 physical location of genes
geneBmapped | e, _‘\ relative to mapped genes
witha physical ——1{-B centromere
method only . °

scalein kb

-0

-5

- 10 geneticmap
- 15 oM scale

— 20
- 25 (
Traditional approach first computes all

marker pairwise similarities O(M?)

Graph Problems in Genetic Mapping #1

» Linkage group construction is traditionally done via single-
linkage clustering

« Naive O(M?) computation, metric tricks don’t seem to
apply due to the use of LOD score for distance.

« Bubblecluster helps reduce this to O(M log(M))
« Main idea: Clusters have a “quasi-linear structure”
« Linear as they represent chromosomes
« Quasi because of sequencing errors and missing data

- -~ -—— -—— ’— -~

- - ~
/’ oS T~ 7 \ - 7 >\ \)/ S
t \ 2_/_ ——————— ‘———h‘———J__ \
/ - -)
D é® .o N @ /b ° o b 2
< \ r \ re / r; 71
N i -}_____7'&__)’ \/ N ,b }__/i____(:-_— !
N s\ 7 TS o s S -~ DA -
S =" N\ / = - N ’ = = -
- ~ P ~ -~

Strnadova, V., Bulug, A., Chapman, J., Gilbert, J.R., Gonzalez, J., Jegelka, S., Rokhsar, D. and Oliker, L.,
2014. Efficient and accurate clustering for large-scale genetic mapping. In BIBM

Graph Problems in Genetic Mapping #2

Ordering step is naively a Travelling Salesman Problem (TSP)

Not feasible for many markers; but the marker count does not
dictate the complexity, distinguishable markers (a.k.a. bins)
do. The latter is limited by population size.

Even then, TSP is overkill.

MSTMap exploits the 2-approximation of minimum spanning
tree to TSP

@—) '(‘D’ ..@\, '<(D |<(->| — 3
Q p0 <)
|/I7\| (f) |@» » //1/1 0(}‘) L] C_Q’ _) » (_I—_;j’ /23' @:j'
\D ’@' (‘)
® " ()

Wu, Yonghui, et al. "Efficient and accurate construction of genetic linkage maps from the minimum
spanning tree of a graph." PLoS genetics 4.10 (2008):

Graph Problems in Genetic Mapping #3

 Integrating two genetic/physical/optical maps
« What to do when two genetic maps differ?

* Identify strongly
connected
components
(SCCs).

« Contract them into
supervertices

* Rest of the graph
has consistent
ordering

Yap, I.V., Schneider, D., Kleinberg, J., Matthews, D., Cartinhour, S. and McCouch, S.R., 2003. A graph-
theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics

Outline

» Constructing genetic linkage maps and its graph
theoretical formulations

+ (Protein) sequence similarity graphs and their
clustering

« GraphBLAS: Linear-algebraic building blocks for
graph algorithms

ldentifying protein families

Q A protein family: group of proteins that share a common
evolutionary origin, reflected by their related functions and
similarities in sequence or structure

Input: pairwise similarities Output: clusters of
between proteins (Sparse) similar proteins

—)
- %é

0 Desired scale: 10s of billions of genes/proteins, trillions of
nonzero pairwise similarities

Markov Cluster (MCL) Algorithm

O MCL simulates random walks in a graph

Stijn van Dongen, Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, May 2000

Q One of the most popular algorithms in community
for finding protein families from sequence data

“...but MCL continued to outperform all other algorithms after a threshold was
applied. As a result, we believe researchers may now more confidently use the
time-efficient MCL clustering technique for most of their protein sequence analysis
needs.”

Apeltsin, Leonard, et al. "Improving the quality of protein similarity network clustering algorithms using
the network edge weight distribution." Bioinformatics 27.3 (2010): 326-333.

“This analysis shows that MCL is remarkably robust to graph alterations...”

Brohee, S. and Van Helden, J., 2006. Evaluation of clustering algorithms for protein-protein interaction
networks. BMC bioinformatics

Markov Cluster Algorithm (MCL)

Widely popular and successful algorithm for discovering
clusters in protein interaction and protein similarity networks

.At each iteration:
i Step 1 (Expansion): Squaring the matrix while

pruning (a) small entries, (b) denser columns
Naive implementation: sparse matrix-matrix product (Sp GEMM),
followed by column-wise top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise

HipMCL: High-performance MCL

MCL process is both computationally expensive and memory
hungry, limiting the sizes of networks that can be clustered

b b b
A e G A s 2
° ° ° ° - ,
it ol . _
°) ° ° o0 Prune |¢
X -_ . ; —
o o0 o ® o o o0 -
® o e o . .
° CI) ° o0 e 0 e 0
A ' A? C = Prune(A2?)
A,

HipMCL overcomes such limitation via sparse parallel algorithms.
Up to 1000X times faster than original MCL with same accuracy.
Easily clusters a network of ~75M nodes with ~68B edges in ~2.4
hours using ~2000 nodes of Cori/NERSC.

———

. A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Bulug; HipMCL: a high-performance parallel
. implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018 |

Outline

» Constructing genetic linkage maps and its graph
theoretical formulations

* (Protein) sequence similarity graphs and their
clustering

« GraphBLAS: Linear-algebraic building blocks
for graph algorithms

The GraphBLAS effort

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National
Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert
(University of California at Santa Barbara). Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles
Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University
of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation),
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is

a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

The GraphBLAS Forum: http://graphblas.org

IEEE Workshop on Graph Algorithms Building Blocks (at IPDPS):
http://www.graphanalysis.org/workshop2018.html

Purpose of GraphBLAS

 Combinatorial graph algorithms, such as those involving graph
traversals, did not map well to existing hardware and did not
parallelize well.

 GraphBLAS is about making such traversal-based and other
combinatorial graph algorithms faster

* Its primary motivation and drive is not spectral methods

* Instead, GraphBLAS examples include betweenness centrality,
Markov clustering, breadth-first search, maximal independent
sets, PageRank, triangle counting, bipartite graph matching,
graph ordering, and connected components.

* The vision for linear-algebraic graph algorithms (there is a SIAM
book for that) and several high performance systems based on
the idea existed (Combinatorial BLAS, GraphMat, GPI).

e Standardization is to avoid divergence of APlIs.

A.Bulug, T. Mattson, S. McMillan, J. Moreira, C. Yang. “The GraphBLAS C API Specification”, version 1.1

Breadth-first search
using matrix algebra

from

Replace scalar operations
Multiply -> select
Add -> minimum

from

parents: @

Select vertex with
minimum label as parent

parents:

S & O &

)

parents:

® ® ® & O &

Breadth-First Search in GraphBLAS

GrB_Vector q; // wvertices wvisited in each level
GrB_Vector_new(&q,GrB.BOOL,n); // Vector<bool> q(n) = false
GrB_Vector_setElement (q,(bool)true,s); // q[s] = true, false everywhere else
GrB_Monoid Lor; // Logical—or monoid

GrB_Monoid_new(&Lor ,GrB_LOR, false);

GrB_Semiring Boolean; // Boolean semiring
GrB_Semiring_new(&Boolean , Lor ,GrB_.LAND) ;

GrB_Descriptor desc; // Descriptor for vzm
GrB_Descriptor_new(&desc);
GrB_Descriptor_set (desc ,GrB.MASK, GrB_SCMP) ; // invert the mask

GrB_Descriptor_set (desc ,GrB.OUTP,GrB.REPLACE); // clear the output before assignment

GrB_UnaryOp apply_level;
GrB_UnaryOp_new(&apply_level ;return_level ,GrB_. INT32,GrB_.BOOL) ;

/%

* BFS traversal and label the wvertices.

*/

level = 0;
GrB_Index nvals;
do {
+tlevel; next level (start with 1)
GrB_apply (xv,GrB.NULL, GrB_.PLUS_INT32, apply_-level ,q,GrB.NULL); // v/[q] = level
GrB_vxm(q,*v,GrB_.NULL, Boolean ,q,A, desc); J/ q[lv] = q ||.66 A ; finds all the
// unvisited successors from current q

GrB_Vector_nvals(&nvals, q);
} while (nvals); // if there is no successor in q, we are done.

GraphBLAS C API Spec (http://graphblas.org)

* Goal: A crucial piece of the GraphBLAS effort is to translate the mathematical
specification to an actual Application Programming Interface (API) that

. is faithful to the mathematics as much as possible, and
ii. enables efficient implementations on modern hardware.

e Impact: All graph and machine learning algorithms that can be expressed in the
language of linear algebra
* Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs

(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a
hierarchy of algebras (functions, monoids, and semiring)

GrB _info GrB mxm(GrB Matrix *C, // destination
const GrB Matrix Mask,
const GrB_BinaryOp accum,
const GrB_Semiring op, — AT T
const GrB Matrix A, C(_IM) o= A @'® B
const GrB Matrix B
[, const Descriptor desc]) ;

Aydin Buluc, Timothy Mattson, Scott McMillan, Jose Moreira, and Carl Yang. Design of the GraphBLAS API for
C. In Intl. Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2017.

Parallel algorithms for sparse-matrix- sparse matrix
multiplication (SpGEMM)

Goal: More scalable Sp GEMM algorithms in shared and distributed-memory

Applications: Algebraic multigrid (AMG) restriction, graph computations, guantum
chemistry, data mining, interior-point optimization

Algorithmic innovations: (1) Novel shared-memory kernel for in-node parallelism, (2)
Split-3D-SpGEMM: an efficient implementation of communication-avoiding Sp GEMM

Performance: Split-3D-SpGEMM with new shared-memory kernel (red) beats old

nlpkkt160 x nlpkkt160 (on Edison)

state-of-the-art (blue) by 8X at large concurrencies

Joe

n/«/pc C:Tkl = 2 Ai/kBljk
<> =1
As [x - >
V & V ok y 4
=
S
=
Ao =N X = ”~ 2 V4 |
< —— 2D (t=1)
< 1 —O— 2D (t=3)
= —+— 2D (t=6)
= —#— 3D (c=4, t=1)
—— 3D (c=4, t=3)
A.q %\4 X j:; = Y oA > y 4 3D (c=8, t=1)
—0— 3D (c=8, t=6)
095 —+— 3D (c=16, t=6) : : :
intermediate final 64 256 1024 4096 16384
A B c c Number of Cores

A. Azad, G. Ballard, A. Bulug, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, S. Williams. Exploiting multiple levels of
parallelism in sparse matrix-matrix multiplication. SIAM Journal of Scientific Computing (SISC), 2016.

Betweenness Centrality

Definition:

g

]

Cg(v): Among all the shortest paths,
what fraction of them pass through

il
S
/G
N
,’

5{‘.‘.‘.?’:;’ %‘}0 “ @ the node of interest?
S S S . A ot (V)
A L7~ BCw= 3

s#EvFELEV

o is the number of shortest paths
between vertices s and t

o4 (V) is the number of such paths
that pass through vertex v

« APSP is wasteful for sparse graphs
« Brandes’ algorithm is O(mn) for unweighted graphs

Driver: Multiple-source

breadth-first search

° O O
° O
° ’ .: O ° > .o
° °
° ° O
°
Al B AT.B

« Sparse array representation => space efficient
« Sparse matrix-matrix multiplication => work efficient
 Three possible levels of parallelism: searches, vertices, edges

« Highly-parallel implementation for Betweenness Centrality*
*: A measure of influence in graphs, based on shortest paths

Forward sweep of BC in GraphBLAS C API

#include "GraphBLAS.h"

GrB_Info BC_update(GrB_Vector *xdelta, GrB_Matrix A, GrB_Index s, GrB_Index nsver)
{

GrB_Index n;

GrB_Matrix_nrows(&n, A); // n = # of vertices in graph
GrB_Vector_new(delta,GrB_FP32,n); // Vector<float> delta(n)
GrB_Monoid Int32Add; // Monoid <int32_t,+,0>
GrB_Monoid_new(&Int32Add,GrB_INT32,GrB_PLUS_INT32,0);

GrB_Semiring Int32AddMul; // Semiring <int32_t,int32_t,int32_t,+,*,0>

GrB_Semiring_new(&Int32AddMul, Int32Add, GrB_TIMES_INT32);
GrB_Descriptor desc_tsr; // Descriptor for BFS phase mxm

GrB_Descriptor_new(&desc_tsr);

GrB_Descriptor_set(desc_tsr,GrB_INPO,GrB_TRAN); // transpose of the adjacency matrix
GrB_Descriptor_set(desc_tsr,GrB_MASK,GrB_SCMP) ; // structural complement of the mask
GrB_Descriptor_set(desc_tsr,GrB_OUTP,GrB_REPLACE); // clear output before result is stored

// index and value arrays needed to build numsp
GrB_Index *xi_nsver = malloc(sizeof(GrB_Index)x*nsver);
int32_t xones = malloc(sizeof(int32_t)*nsver);
for(int i=@; i<nsver; ++i) {

i_nsverl[i] = 1i;

ones[i] = 1;

}

Forward sweep of BC in GraphBLAS C API

GrB_Matrix numsp; // Its nonzero structure holds all vertices that have been discovered
GrB_Matrix_new(&numsp, GrB_INT32, n, nsver); // also stores # of shortest paths so far

GrB_Matrix_build(&numsp,GrB_NULL,GrB_NULL,s,i_nsver,ones,nsver,GrB_PLUS_INT32,GrB_NULL);
free(i_nsver); free(ones);

GrB_Matrix frontier; // Holds the current frontier where values are path counts.
GrB_Matrix_new(&frontier, GrB_INT32, n, nsver); // Initialized: neighbors of each source
GrB_extract(&frontier,numsp,GrB_NULL,A,GrB_ALL,n,s,nsver,desc_tsr);

// The memory for an entry in sigmas is only allocated within the do-while loop if needed

GrB_Matrix xsigmas = malloc(sizeof(GrB_Matrix)*n); // n is an upper bound on diameter
int32_t d = 0; // BFS level number

int32_t nvals = 0; // nvals == 0 when BFS phase is complete

do { // - —— The BFS phase (forward sweep) - - ——

GrB_Matrix_new(&(sigmas[d]l), GrB_BOOL, n, nsver);
// sigmas[d](:,s) = d~th level frontier from source vertex s

GrB_apply(&(sigmas[d]),GrB_NULL,GrB_NULL,GrB_IDENTITY_BOOL, frontier,GrB_NULL);
GrB_eWiseAdd (&numsp, GrB_NULL,GrB_NULL,Int32Add, numsp, frontier,GrB_NULL);
// numsp += frontier (accum path counts)

GrB_mxm(&frontier,numsp,GrB_NULL, Int32AddMul,A, frontier,desc_tsr);
// f<!numsp> = A' +.x f (update frontier)
GrB_Matrix_nvals(&nvals, frontier)
d++;
} while (nvals);

Forward sweep of BC in GraphBLAS C API

The GrB_mxm call forms the next frontier in one step by both
expanding the current frontier (i.e., discovering the 1-hop neighbors of
the set of vertices in the current frontier) and pruning the vertices that
have already been discovered.

The former is achieved by setting the descriptor, desc_tsr, to use the
transpose of the adjacency matrix. The latter is achieved by setting the
descriptor to use the structural complement of the mask and by
passing the numsp matrix as the mask parameter.

The implicit cast of numsp to Boolean allows GrB_mxm to interpret
numsp as the set of previously discovered vertices.

Note that the descriptor is also set to GrB_REPLACE to ensure that the
frontier is overwritten with new values.

GrB_mxm(&frontier, numsp,GrB_NULL, Int32AddMul,A, frontier,desc_tsr);
// f<!numsp> = A' +.x f (update frontier)

Conclusions

GraphBLAS enables one to efficiently cast graph algorithms
and machine learning methods into the languages of sparse
matrices

While elegant and efficient for problems that fit into the linear
algebra framework, it is admittedly not fully universal.

The standard definition by the C API group and a compliant
implementation by Tim Davis available at
http://graphblas.org

More parallel implementations in the works. Currently one
can use approximate GraphBLAS implementations from
Combinatorial BLAS, Kokkos, and Cyclops Tensor
Framework.

