Graphs and Complex Networks Across Domains

GraphXD Workshop 2018
Berkeley Institute for Data Science (BIDS)

Jarrod Millman Division of Biostatistics University of California, Berkeley

March 27, 2018

What is a graph?

A set of vertices connected by edges

Formally, the graph G is an ordered pair (V,E) where

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{3, 4\}, \{4, 5\}\}$$

Matrix perspective

Adjacency matrix

$$A_G = egin{bmatrix} 0 & 1 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{3, 4\}, \{4, 5\}\}$$

Laplacian = Degree - Adjacency

$$L_G = egin{bmatrix} 3 & 0 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 & 0 \ 0 & 0 & 3 & 0 & 0 \ 0 & 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 0 & 2 \end{bmatrix} - egin{bmatrix} 0 & 1 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{3, 4\}, \{4, 5\}\}$$

Linear Algebra

Spectral Theorem for Symmetric Matrices

Definition

A scalar λ is called an **eigenvalue** of a square matrix A and a vector v its associated **eigenvector** if $Av=\lambda v$.

Theorem

Let A be a symmetric n imes n matrix with real-valued entries, then there are n (not necessarily distinct) real eigenvalues

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
 (spectrum)

and $oldsymbol{n}$ orthonormal real vectors

$$v_1, v_2, \ldots, v_n$$

such that v_i is an eigenvector of λ_i .

Where do graphs come from?

Graphs from data

Vertices

- People
- Animals
- Ancestors
- Cities
- Genes
- Brain regions
- Random variables
- ► Etc.

Edges

- Interactions
- Cooccurrence
- Expert knowledge
- Correlation
- Conditional independence
- Causality
- ► Etc.

Pre-workshop Questionnaire

- Vertices (25 respondents out of 30)
 - Attributes
 - What best describes you?
 - ► I work in ...
 - How often do you?
- Edges
 - Observe
 - Collaborate / Communicate / Familiar with their work / Don't know them
 - Use their software / data / algorithms
 - Infer

Who are we?

How often do you?

Edges

Adjacency matrices (respondent × participant)

Collaborate (n = 25, m = 33)

Density: 0.11

Average degree: 2.6

Personally communicate (n=25, m=68)

Density: 0.23

Average degree: 5.4

Familiar with their work (n = 25, m = 70)

Density: 0.23

Average degree: 5.6

Don't know them (n = 25, m = 232)

Density: 0.77

Average degree: 18.6

Inferring edges

Thresholded correlation

How well did we do?

Actual

Inferred

Plan

- Talks
- Food
- Discussion
- Self-organized activities
 - Scientific / research
 - ► Technical (e.g., coding sprints, tutorials, data analysis)
 - Communication (e.g., proposals, whitepapers, blog posts)
- ► Reflection

Thanks

- Stacey Dorton
- Jessica Zosa Forde
- Aaron Schild
- Stéfan van der Walt
- Nelle Varoquaux
- and the whole BIDS community ...

Histogram of correlation coefficients

