Understanding the ecology and evolution of communities through networks

Lauren Ponisio and Marilia Gaiarsa University of California Riverside

Chengjiang Shale

Original Species S = 85, L = 559, C = 0.077 TL = 2.99, MaxTL = 5.15

Trophic Species S = 33, L = 99, C = 0.091 TL = 2.84, MaxTL = 4.36

Burgess Shale

Original Species
S = 142, L = 771, C = 0.038
TL = 2.42, MaxTL = 3.67

Trophic Species S = 48, L = 249, C = 0.108 TL = 2.72, MaxTL = 3.78

Ponisio et al. Ecol. Let. 2017

Case study in comparing networks

CA Central Valley

Assembling hedgerow

Non-assembling field margin

Non-assembling hedgerow

Preferential attachment

Persistent, generalist core new species attach

Preferential attachment

Persistent, generalist core new species attach

Opportunistic attachment

Opportunistic attachment

Opportunistic attachment

Assembling hedgerow

Change point?

Assembling hedgerow

1. Fit model to network structure

How could we simulate a random network with the same hierarchy?

vertices share a common ancestor r with probability p_r

$$P(G|T,p_r) =$$

Dendrogram
$$P(G|T,p_r) =$$
Graph

Dendrogram
$$P(G|T,p_r) = \prod_r p_r^{E_r} (1-p_r)^{N_r-E_r}$$
 Graph

edges between vertices with the common ancestor r Dendrogram $P(G|T,p_r) = \prod_r p_r^{E_r} (1-p_r)^{N_r-E_r}$ Graph

edges between vertices with the common ancestor r

Dendrogram
$$P(G|T,p_r) = \prod_r p_r^{E_r} (1-p_r)^{N_r-E_r}$$
 Graph

total number of edges

edges between vertices with the common ancestor r

Dendrogram
$$P(G|T,p_r) = \prod_r p_r^{E_r} (1-p_r)^{N_r-E_r}$$
 Graph

total number of edges

edges between vertices with the common ancestor r

Dendrogram
$$P(G|T,p_r) = \prod_r p_r^{E_r} (1-p_r)^{N_r-E_r}$$
 Graph

total number of edges

$$P(G|T, p_r) = \prod_r p_r^{E_r} (1 - p_r)^{N_r - E_r}$$

$$P(G|T, p_r) = \prod_r p_r^{E_r} (1 - p_r)^{N_r - E_r}$$

$$Beta(\alpha, \beta)$$

1. Fit model to network structure

1. Fit model to network structure (Generalized Hierarchical Random Graph Model)

- 1. Fit model to network structure (Generalized Hierarchical Random Graph Model)
- 2. Infer two versions of the model:
 - H1: Change of network structure parameters between two time slices
 - H0: No change of network parameters

Assembling hedgerow

 $Beta(\alpha,\beta)$

Change point?

- 1. Fit model to network structure (Generalized Hierarchical Random Graph Model)
- 2. Infer two versions of the model:
 - H1: Change of network structure parameters between two time slices
 - H0: No change of network parameters

- 1. Fit model to network structure (Generalized Hierarchical Random Graph Model)
- 2. Infer two versions of the model:
 - H1: Change of network structure parameters between two time slices
 - H0: No change of network parameters
- 3. Use Bayes factors to choose which model, change or no-change, is the better

3. Use Bayes factors to choose which model, change or no-change, is the better

- 1. Fit model to network structure (Generalized Hierarchical Random Graph Model)
- 2. Infer two versions of the model:
 - 1.H1: Change of network structure parameters between two time slices
 - 2.H0: No change of network parameters
- 3. Use Bayes factors to choose which model, change or no-change, is the better
- 4. Test whether assembling hedgerows had more change points than non-assembling (Generalized linear mixed model with Binomial error)

- 1. Fit model to network structure (Generalized Hierarchical Random Graph Model)
- 2. Infer two versions of the model:
 - 1.H1: Change of network structure parameters between two time slices
 - 2.H0: No change of network parameters
- 3. Use Bayes factors to choose which model, change or no-change, is the better
- 4. Test whether assembling hedgerows had more change points than non-assembling (Generalized linear mixed model with Binomial error)

Assembling hedgerow

Assembling hedgerow

~ 20% pairs of years

Assembling hedgerow

~ 20% pairs of years**

Non-assembling communities

~ 5% pairs of years

Ponisio, Gaiarsa and Kremen, 2017 Ecol. Lett.

Ponisio, Gaiarsa and Kremen, 2017 Ecol. Lett.

Mesoscale: what is your network role?

Year 2

Mesoscale: what is your network role?

Abundance

Abundance

Individuals as "samplers"

Abundance

Phenological range

Mesoscale: what is your network role?

Macroscale: what is your contribution to network organization?

Interaction flexibility

Interaction flexibility

Interaction flexibility

More data!!

More data!!

Multilayer networks

Meta-data

Meta-data

interaction frequency, strength, character, outcome, etc

But...

The hardest part of all of this is identifying the individuals to species....

Networks + ecology and evolution

- 1. Moving past summarizing networks with metrics
- 2. Possibilities to look at change through time
- change point analysis
- 3. Soon:
 - more data due to new sequencing technologies
 - more data due to image recognition (right Stefan?)
 - Combine different types of networks
 - Incorporate meta data