Elements of Spectral Graph Theory I

An Introduction to Isoperimetry

Nick Ryder

UC Berkeley Mathematics

March 27th, 2018

Introduction

- Connections between spectral theory of matrices and graphs
- Give natural continuous notions of discrete properties of graphs
- These slides closely follow lecture notes of Dan Spielman

Clustering

Many times people want to study balanced cuts:

- Minimal cuts which split the graph into two near equal parts
- Hard to develop objective for

Instead we look at Isoperimetry:

- Cuts which have small size relative to the smaller cluster
- · Objective easy to define for all subsets of graph

Isoperimetry

To formalize this we define the boundary

 $\partial(S) := \{(u, v) \in E \mid u \in S, v \notin S\}$

and the isoperimetric ratio

$$\theta(S) := \frac{|\partial(S)|}{|S|}$$

Then for a graph we define the isoperimetric number

 $\theta_{G} := \min_{|S| \le \frac{n}{2}} \theta(S)$

Example for $\partial(S)$

Example for θ_G

For this graph θ_G is achieved here:

Laplacian

Let *G* be a *d*-regular graph. The main objects we study are the adjacency matrix A_G and the Laplacian $L_G = dI - A_G$

Laplacian as a Quadratic Form

We consider L_G as a quadratic form to obtain

$$x^{T}L_{G}x = \sum_{\{u,v\}=e\in G} (x(u) - x(v))^{2}$$

Properties of *L*_{*G*}:

- *L*_G is positive semidefinite
- $\mathit{Null}(L_G)$ is spanned by 1_S where $S \subset G$ is a connected component of G
- The multiplicity of the eigenvalue 0 is the number of connected components of *G*.
- For a connected graph, $\lambda_2,$ the second smallest eigenvalue is the quantity of interest

Relating Isoperimetry to the Spectrum

We consider Rayleigh quotients of $\mathbf{y} \perp \mathbf{1}$ which by Courant Fischer bound λ_2

$$\mathcal{R}_{\mathcal{G}}(\mathbf{y}) := rac{\mathbf{y}^{T} \mathcal{L}_{\mathcal{G}} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \qquad \min_{\mathbf{y} \perp \mathbf{1}} \mathcal{R}_{\mathcal{G}}(\mathbf{y}) = \lambda_{2}$$

Given a indicator vector for a subset and projecting away from ${\bf 1}$ we get

$$\mathcal{R}_{\mathsf{G}}\left(\mathbf{1}_{\mathsf{S}} - \frac{|\mathsf{S}|}{|\mathsf{V}|}\mathbf{1}\right) = \frac{|\partial(\mathsf{S})|}{|\mathsf{S}|(1 - \frac{|\mathsf{S}|}{|\mathsf{V}|})} = \left(1 - \frac{|\mathsf{S}|}{|\mathsf{V}|}\right)^{-1}\theta(\mathsf{S})$$

Remark This immediately gives the lower bound $\theta_{G} \geq \lambda_{2}/2$

Relaxation of Clustering Problem

We search for a relaxation of our problem using the relation between $\theta(S)$ and $\mathcal{R}_G(\mathbf{1}_S - \frac{|S|}{|V|}\mathbf{1})$

Minimize	$\theta(S)$	Relaxation	Minimize	$\mathcal{R}_{G}(\mathbf{y})$
$S \subset V, S \le V /2$		/	$\mathbf{y} \perp 1$	

In order for this relaxation to succeed, we need a method of rounding vectors with small Rayleigh quotients to subsets with small isoperimetry.

Cheeger's Inequality

Theorem Given any $\mathbf{y} \perp \mathbf{1}$, we have t such that $S_t = \{v \mid \mathbf{y}(u) \le t\}$ satisfies

 $\theta(S_t) \leq \sqrt{2d\mathcal{R}_{G}(\mathbf{y})}$

This implies

 $\theta_{\mathsf{G}} \leq \sqrt{2 \mathsf{d} \lambda_2}$

Remark

For irregular graphs G, one needs to use the conductance and normalized Laplacian in the statement of Cheeger's inequalities. In the case of regular graphs, they are related by a constant multiple to the isoperimetry and Laplacian.

Algorithm for Clustering Embedding

To find a set S with low isoperimetry:

- Find vector \mathbf{y} such that $\mathcal{R}_{\mathcal{G}}(y)$ is small
- Hence ${\bf y}$ eigenvector for second smallest eigenvalue
- Sort entries of **y** and compute θ for all possible $S_t = \{v \mid y(u) \le t\}$
- Guaranteed to find a set $S_t \subset V$ with $\theta(S_t) \leq \sqrt{2d\lambda_2}$

Can imagine this as embedding the graph G into \mathbf{R} by using the second eigenvalue coordinates, then picking an appropriate threshold to split the vertices.

Example of Clustering

Summary

- Natural quantities associated to graphs can be related to the spectrum of the Laplacian
- Cheeger's Inequality gives an algorithm for clustering the graph with respect to Isoperimetry
- There exists a generalized Cheeger's Inequality for k-clustering

