
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Elements of Spectral Graph Theory II
A Toolkit for Fast Graph Algorithms

Aaron Schild

UC Berkeley EECS

March 27th, 2018

Aaron Schild (UC Berkeley EECS) Elements of Spectral Graph Theory II March 27th, 2018 1 / 14



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Motivation: Maximum Flow

Push as much flow from s to t without violating edge capacities.

s

t

1
1 1

11

1
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Classic technique: Ford-Fulkerson

F : maximum flow value
Push flow along paths one at a time
O(m) time to find each path, F paths
O(mF ) total work

s

t
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Classic technique: Ford-Fulkerson

F : maximum flow value
Push flow along paths one at a time
O(m) time to find each path, F paths
O(mF ) total work
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Classic technique: Ford-Fulkerson

F : maximum flow value
Push flow along paths one at a time
O(m) time to find each path, F paths
O(mF ) total work

s

t
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F : maximum flow value
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O(m) time to find each path, F paths
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Classic technique: Ford-Fulkerson

F : maximum flow value
Push flow along paths one at a time
O(m) time to find each path, F paths
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O(m3/2) time: Blocking Flow

Push flow along maximal collection of s − t shortest paths

s − t distance increases after each augmentation

s

t

Flow pushed: 0
s-t shortest path: 5
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O(m3/2) time: Blocking Flow

Push flow along maximal collection of s − t shortest paths

s − t distance increases after each augmentation

s

t

Flow pushed: 1
s-t shortest path: 8
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O(m3/2) time: Blocking Flow

Push flow along maximal collection of s − t shortest paths

s − t distance increases after each augmentation

s

t

Flow pushed: 3
s-t shortest path: 11
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O(m3/2) time: Blocking Flow

Push flow along maximal collection of s − t shortest paths

s − t distance increases after each augmentation

s

t

Flow pushed: 4
s-t shortest path: infinite
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Analysis of Blocking Flow

s − t distance increases after each augmentation

If distance > D, there must be a cut with size at most
m/D
Only m/D more paths needed at this point
Runtime: O(m(D +m/D))) for any D > 0, minimized with
D = m1/2 → O(m3/2) time

s t

Distance from s
1 2 3 4

Aaron Schild (UC Berkeley EECS) Elements of Spectral Graph Theory II March 27th, 2018 5 / 14



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Analysis of Blocking Flow

s − t distance increases after each augmentation
If distance > D, there must be a cut with size at most
m/D

Only m/D more paths needed at this point
Runtime: O(m(D +m/D))) for any D > 0, minimized with
D = m1/2 → O(m3/2) time

s t

Distance from s
1 2 3 4
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Analysis of Blocking Flow

s − t distance increases after each augmentation
If distance > D, there must be a cut with size at most
m/D
Only m/D more paths needed at this point

Runtime: O(m(D +m/D))) for any D > 0, minimized with
D = m1/2 → O(m3/2) time

s t

Distance from s
1 2 3 4
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Analysis of Blocking Flow

s − t distance increases after each augmentation
If distance > D, there must be a cut with size at most
m/D
Only m/D more paths needed at this point
Runtime: O(m(D +m/D))) for any D > 0, minimized with
D = m1/2 → O(m3/2) time

s t

Distance from s
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Graph Partitioning and Region Growing

Theorem ([LR99])

For any value R > 0, can partition a graph into clusters
C1,C2, . . . ,Ck with two properties:

each cluster has diameter at most R

the number of edges between clusters is at most Õ(m/R)

C1

C2

C3

C4

C5

C6

≤R

≤R ≤ m(log n)/R
intercluster edges
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Maximum Flow as Norm Minimization

suppose graph has unit capacities, m edges, and n vertices

M : n ×m matrix that maps a vector of flow to the induced
vertex demand
χst : n-dimensional vector with χst(s) = 1, χst(t) = −1, and
χst(v) = 0 for all other vertices v

Maximum flow problem: find maximum value of α for which there is
a vector f ∈ Rm with Mf = αχst with ||f ||∞ ≤ 1.
Equivalently up to scaling: minf ||f ||∞ subject to Mf = χst

1

2

-3

5

0
1
6
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M : n ×m matrix that maps a vector of flow to the induced
vertex demand
χst : n-dimensional vector with χst(s) = 1, χst(t) = −1, and
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Maximum Flow as Norm Minimization

suppose graph has unit capacities, m edges, and n vertices
M : n ×m matrix that maps a vector of flow to the induced
vertex demand
χst : n-dimensional vector with χst(s) = 1, χst(t) = −1, and
χst(v) = 0 for all other vertices v

Maximum flow problem: find maximum value of α for which there is
a vector f ∈ Rm with Mf = αχst with ||f ||∞ ≤ 1.

Equivalently up to scaling: minf ||f ||∞ subject to Mf = χst
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Maximum Flow as Norm Minimization

suppose graph has unit capacities, m edges, and n vertices
M : n ×m matrix that maps a vector of flow to the induced
vertex demand
χst : n-dimensional vector with χst(s) = 1, χst(t) = −1, and
χst(v) = 0 for all other vertices v

Maximum flow problem: find maximum value of α for which there is
a vector f ∈ Rm with Mf = αχst with ||f ||∞ ≤ 1.
Equivalently up to scaling: minf ||f ||∞ subject to Mf = χst
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Other Norm-Minimizing Flows

1

1

s

t

(a) ℓ1 (shortest path)

3/5

3/5

2/5

2/5

2/5

s

t

(b) ℓ2

1/2

1/2

1/2

1/2

1/2

s

t

(c) ℓ∞ (max flow)
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Electrical Flows

3/5

3/5

2/5

2/5

2/5
t

s

Can be computed in almost linear time by solving a Laplacian linear
system! [ST003]
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Finding maximum flows using electrical flows

Algorithm (similar to [CKM+10]):
Arbitrarily initialize resistances {re}e
While there is some edge e with fe > ce

▶ Let f be the s − t electrical flow with resistances r
▶ Increase the resistance of edges with fe > ce

.

.

.

k edge
paths

k paths

One edge
-(k+1)

+(k+1)

1 1 1

1
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Finding maximum flows using electrical flows

Algorithm (similar to [CKM+10]):
Arbitrarily initialize resistances {re}e
While there is some edge e with fe > ce

▶ Let f be the s − t electrical flow with resistances r
▶ Increase the resistance of edges with fe > ce

.

.

.

k paths

One edge
-(k+1)

+(k+1)

1 1 1

1

(k+1)/(2k)

(k+1)/2
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Finding maximum flows using electrical flows

Algorithm (similar to [CKM+10]):
Arbitrarily initialize resistances {re}e
While there is some edge e with fe > ce

▶ Let f be the s − t electrical flow with resistances r
▶ Increase the resistance of edges with fe > ce

.

.

.

k paths

One edge
-(k+1)

+(k+1)

1 1 1

1 2
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Geometry and its relationship to iteration count

Can find an approximate max flow in Õ(
√
mpoly(1/ϵ)) iterations

√
m comes from gap between ℓ2 and ℓ∞ norm in Rm

Õ(m) time per iteration → Õ(m3/2poly(1/ϵ)) time

O

x
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Geometry and its relationship to iteration count

Can find an approximate max flow in Õ(
√
mpoly(1/ϵ)) iterations√

m comes from gap between ℓ2 and ℓ∞ norm in Rm

Õ(m) time per iteration → Õ(m3/2poly(1/ϵ)) time

O

x
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Geometry and its relationship to iteration count

Can find an approximate max flow in Õ(
√
mpoly(1/ϵ)) iterations√

m comes from gap between ℓ2 and ℓ∞ norm in Rm

Õ(m) time per iteration → Õ(m3/2poly(1/ϵ)) time

O

x
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Better geometry with graph embeddings

Embed graph into a simpler graph while preserving
cuts/distances

Simplest possible graph: a tree
Unfortunately, can’t do well with a single tree, but can do well
with a distribution over trees!
Related embedding technique can be used to find an
mo(1)-approximate ℓ∞ projection, which yields an
(1 + ϵ)-approximate max flow in O(mpolylog(n)/ϵ) time
[KLOS14, She13, She17, Pen16]
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Better geometry with graph embeddings

Embed graph into a simpler graph while preserving
cuts/distances
Simplest possible graph: a tree

Unfortunately, can’t do well with a single tree, but can do well
with a distribution over trees!
Related embedding technique can be used to find an
mo(1)-approximate ℓ∞ projection, which yields an
(1 + ϵ)-approximate max flow in O(mpolylog(n)/ϵ) time
[KLOS14, She13, She17, Pen16]
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Better geometry with graph embeddings

Embed graph into a simpler graph while preserving
cuts/distances
Simplest possible graph: a tree
Unfortunately, can’t do well with a single tree, but can do well
with a distribution over trees!

Related embedding technique can be used to find an
mo(1)-approximate ℓ∞ projection, which yields an
(1 + ϵ)-approximate max flow in O(mpolylog(n)/ϵ) time
[KLOS14, She13, She17, Pen16]
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Summary

Graph partitioning (diameter v.s. cutsize)

Writing flow problems as norm minimization

Graph embedding
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