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Motivation: Maximum Flow

Push as much flow from s to t without violating edge capacities.

t
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Classic technique: Ford-Fulkerson

F: maximum flow value

Push flow along paths one at a time
O(m) time to find each path, F paths
O(mF) total work

t
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Classic technique: Ford-Fulkerson

@ f: maximum flow value

@ Push flow along paths one at a time
@ O(m) time to find each path, F paths
e O(mF) total work
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Classic technique: Ford-Fulkerson

@ f: maximum flow value

@ Push flow along paths one at a time
@ O(m) time to find each path, F paths
e O(mF) total work
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O(m*?) time: Blocking Flow

@ Push flow along maximal collection of s — t shortest paths
@ s — t distance increases after each augmentation

Flow pushed: 0 s
s-t shortest path: 5
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O(m*?) time: Blocking Flow

@ Push flow along maximal collection of s — t shortest paths
@ s — t distance increases after each augmentation

Flow pushed: 1 s
s-t shortest path: 8
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O(m*?) time: Blocking Flow

@ Push flow along maximal collection of s — t shortest paths
@ s — t distance increases after each augmentation

Flow pushed: 3 s
s-t shortest path: 11
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O(m*?) time: Blocking Flow

@ Push flow along maximal collection of s — t shortest paths
@ s — t distance increases after each augmentation

Flow pushed: 4
s-t shortest path: infinite
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Analysis of Blocking Flow

@ s — t distance increases after each augmentation

Distance from s
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Analysis of Blocking Flow

@ s — t distance increases after each augmentation
o If distance > D, there must be a cut with size at most
m/D

Distance from s

1 2 3 4
1
1
)
T
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Analysis of Blocking Flow

@ s — t distance increases after each augmentation

o If distance > D, there must be a cut with size at most
m/D

@ Only m/D more paths needed at this point

Distance from s
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Analysis of Blocking Flow

@ s — t distance increases after each augmentation

o If distance > D, there must be a cut with size at most
m/D

@ Only m/D more paths needed at this point

e Runtime: O(m(D + m/D))) for any D > 0, minimized with
D = m*/2 — O(m3/?) time

Distance from s
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Graph Partitioning and Region Growing
Theorem ([LR99])

For any value R > 0, can partition a graph into clusters
G, G, ..., C with two properties:

@ each cluster has diameter at most R

o the number of edges between clusters is at most O(m/R)

<m(log n)/R
intercluster edges
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Maximum Flow as Norm Minimization

@ suppose graph has unit capacities, m edges, and n vertices
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Maximum Flow as Norm Minimization

@ suppose graph has unit capacities, m edges, and n vertices
@ M: n x m matrix that maps a vector of flow to the induced
vertex demand
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Maximum Flow as Norm Minimization

@ suppose graph has unit capacities, m edges, and n vertices

@ M: n x m matrix that maps a vector of flow to the induced
vertex demand

@ X5 n-dimensional vector with x4 (s) = 1, x«(t) = —1, and
Xst(v) = 0 for all other vertices v
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Maximum Flow as Norm Minimization

@ suppose graph has unit capacities, m edges, and n vertices
@ M: n x m matrix that maps a vector of flow to the induced
vertex demand
@ X5 n-dimensional vector with x4 (s) = 1, x«(t) = —1, and
Xst(v) = 0 for all other vertices v
Maximum flow problem: find maximum value of « for which there is
a vector f € R™ with Mf = axe with ||| < 1.
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Maximum Flow as Norm Minimization

@ suppose graph has unit capacities, m edges, and n vertices
@ M: n x m matrix that maps a vector of flow to the induced
vertex demand
@ X5 n-dimensional vector with x4 (s) = 1, x«(t) = —1, and
Xst(v) = 0 for all other vertices v
Maximum flow problem: find maximum value of « for which there is
a vector f € R™ with Mf = axe with ||| < 1.
Equivalently up to scaling: min¢ ||f]||. subject to Mf = x4
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Other Norm-Minimizing Flows

s 1/2
o) 5 12
1/2
1/2

t 1/2

) ¢
(a) £1 (shortest path) 2
(c) o (max flow)
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Electrical Flows

S
S 2/5
" 3/5
E o 2/5
| 3/5
_____________ 575
t

Can be computed in almost linear time by solving a Laplacian linear
system! [ST003]
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Finding maximum flows using electrical flows

Algorithm (similar to [CKM*10]):
@ Arbitrarily initialize resistances {r.}.
@ While there is some edge e with f, > c,
» Let f be the s — t electrical flow with resistances r
» Increase the resistance of edges with f. > c.

k paths

+(k+1)

k edge
paths

One edge
-(k+1)
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Geometry and its relationship to iteration count

@ Can find an approximate max flow in O(y/mpoly(1/€)) iterations
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Geometry and its relationship to iteration count

@ Can find an approximate max flow in O(y/mpoly(1/€)) iterations
@ /m comes from gap between ¢, and {,, norm in R™
e O(m) time per iteration — O(m*/2poly(1/e)) time
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Better geometry with graph embeddings

@ Embed graph into a simpler graph while preserving
cuts/distances
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Better geometry with graph embeddings

@ Embed graph into a simpler graph while preserving
cuts/distances

@ Simplest possible graph: a tree
@ Unfortunately, can't do well with a single tree, but can do well

with a distribution over trees!
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Better geometry with graph embeddings

@ Embed graph into a simpler graph while preserving
cuts/distances

@ Simplest possible graph: a tree

@ Unfortunately, can't do well with a single tree, but can do well
with a distribution over trees!

@ Related embedding technique can be used to find an
m°M-approximate ¢, projection, which yields an
(1 + €)-approximate max flow in O(mpolylog(n)/e) time
[KLOS14, Shel3, Shel7, Pen16]
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Summary

@ Graph partitioning (diameter v.s. cutsize)
@ Writing flow problems as norm minimization

@ Graph embedding
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