Elements of Spectral Graph Theory II

A Toolkit for Fast Graph Algorithms

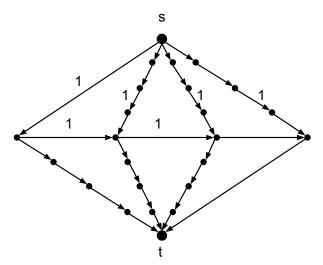
Aaron Schild

UC Berkeley EECS

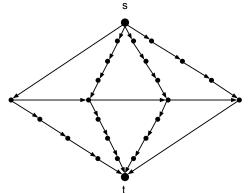
March 27th, 2018

Motivation: Maximum Flow

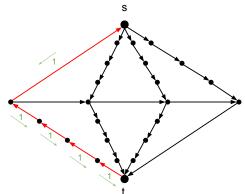
Push as much flow from s to t without violating edge capacities.



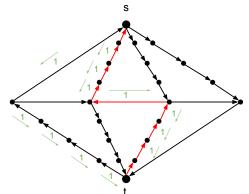
- F: maximum flow value
- Push flow along paths one at a time
- O(m) time to find each path, F paths
- O(mF) total work



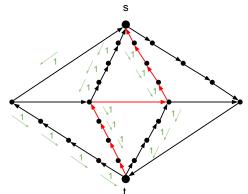
- F: maximum flow value
- Push flow along paths one at a time
- O(m) time to find each path, F paths
- O(mF) total work



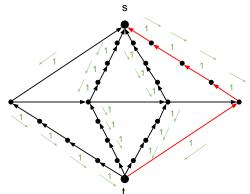
- F: maximum flow value
- Push flow along paths one at a time
- O(m) time to find each path, F paths
- O(mF) total work



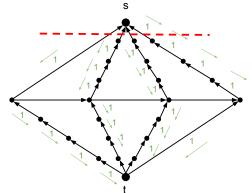
- F: maximum flow value
- Push flow along paths one at a time
- O(m) time to find each path, F paths
- O(mF) total work



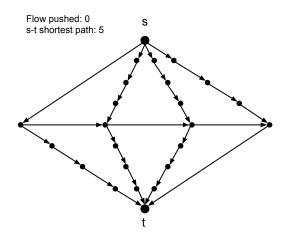
- F: maximum flow value
- Push flow along paths one at a time
- O(m) time to find each path, F paths
- O(mF) total work



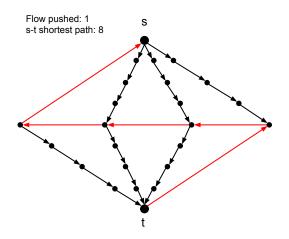
- F: maximum flow value
- Push flow along paths one at a time
- O(m) time to find each path, F paths
- O(mF) total work



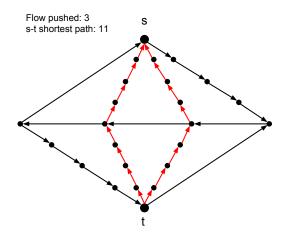
- Push flow along maximal collection of s t shortest paths
- \bullet s-t distance increases after each augmentation



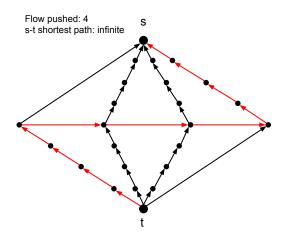
- Push flow along maximal collection of s t shortest paths
- \bullet s-t distance increases after each augmentation



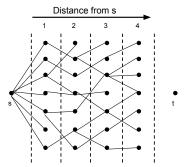
- Push flow along maximal collection of s t shortest paths
- \bullet s-t distance increases after each augmentation



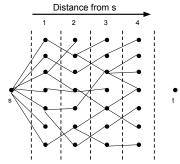
- Push flow along maximal collection of s t shortest paths
- \bullet s-t distance increases after each augmentation



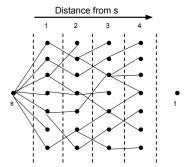
 \bullet s-t distance increases after each augmentation



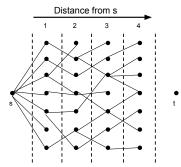
- ullet s-t distance increases after each augmentation
- If distance > D, there must be a cut with size at most m/D



- ullet s-t distance increases after each augmentation
- If distance > D, there must be a cut with size at most m/D
- Only m/D more paths needed at this point



- ullet s-t distance increases after each augmentation
- If distance > D, there must be a cut with size at most m/D
- ullet Only m/D more paths needed at this point
- Runtime: O(m(D+m/D)) for any D>0, minimized with $D=m^{1/2}\to O(m^{3/2})$ time

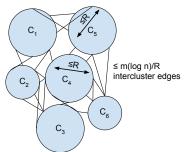


Graph Partitioning and Region Growing

Theorem ([LR99])

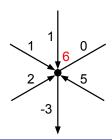
For any value R > 0, can partition a graph into clusters C_1, C_2, \ldots, C_k with two properties:

- each cluster has diameter at most R
- the number of edges between clusters is at most $\tilde{O}(m/R)$

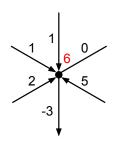


• suppose graph has unit capacities, *m* edges, and *n* vertices

- suppose graph has unit capacities, m edges, and n vertices
- M: n × m matrix that maps a vector of flow to the induced vertex demand

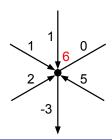


- suppose graph has unit capacities, m edges, and n vertices
- M: n × m matrix that maps a vector of flow to the induced vertex demand
- χ_{st} : *n*-dimensional vector with $\chi_{st}(s)=1$, $\chi_{st}(t)=-1$, and $\chi_{st}(v)=0$ for all other vertices v



- suppose graph has unit capacities, m edges, and n vertices
- M: n × m matrix that maps a vector of flow to the induced vertex demand
- χ_{st} : *n*-dimensional vector with $\chi_{st}(s) = 1$, $\chi_{st}(t) = -1$, and $\chi_{st}(v) = 0$ for all other vertices v

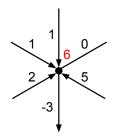
Maximum flow problem: find maximum value of α for which there is a vector $f \in \mathbb{R}^m$ with $Mf = \alpha \chi_{st}$ with $||f||_{\infty} \leq 1$.



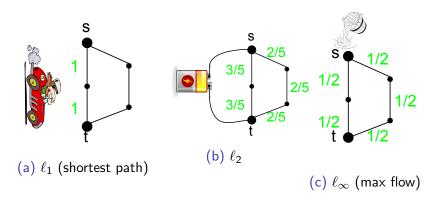
- suppose graph has unit capacities, m edges, and n vertices
- M: n × m matrix that maps a vector of flow to the induced vertex demand
- χ_{st} : *n*-dimensional vector with $\chi_{st}(s) = 1$, $\chi_{st}(t) = -1$, and $\chi_{st}(v) = 0$ for all other vertices v

Maximum flow problem: find maximum value of α for which there is a vector $f \in \mathbb{R}^m$ with $Mf = \alpha \chi_{st}$ with $||f||_{\infty} \leq 1$.

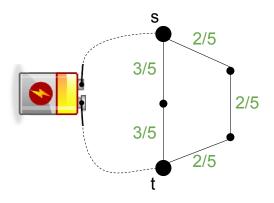
Equivalently up to scaling: $\min_f ||f||_{\infty}$ subject to $Mf = \chi_{st}$



Other Norm-Minimizing Flows



Electrical Flows

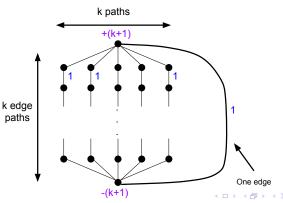


Can be computed in almost linear time by solving a Laplacian linear system! [ST003]

Finding maximum flows using electrical flows

Algorithm (similar to [CKM+10]):

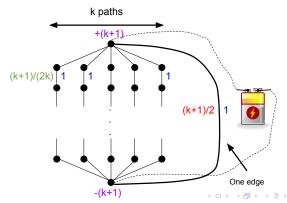
- Arbitrarily initialize resistances $\{\mathbf{r}_e\}_e$
- ullet While there is some edge e with ${f f}_e > {f c}_e$
 - ▶ Let **f** be the s t electrical flow with resistances **r**
 - lacktriangle Increase the resistance of edges with ${f f}_e > {f c}_e$



Finding maximum flows using electrical flows

Algorithm (similar to [CKM+10]):

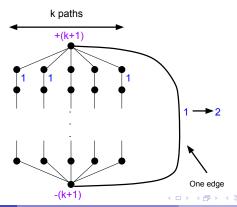
- ullet Arbitrarily initialize resistances $\{{f r}_e\}_e$
- ullet While there is some edge e with ${f f}_e > {f c}_e$
 - ▶ Let **f** be the s t electrical flow with resistances **r**
 - lacktriangle Increase the resistance of edges with ${f f}_e > {f c}_e$



Finding maximum flows using electrical flows

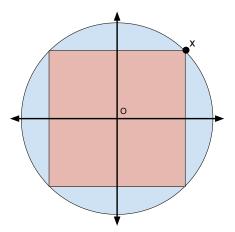
Algorithm (similar to [CKM+10]):

- ullet Arbitrarily initialize resistances $\{{f r}_e\}_e$
- ullet While there is some edge e with ${f f}_{
 m e} > {f c}_{
 m e}$
 - ▶ Let **f** be the s t electrical flow with resistances **r**
 - lacktriangle Increase the resistance of edges with ${f f}_e > {f c}_e$



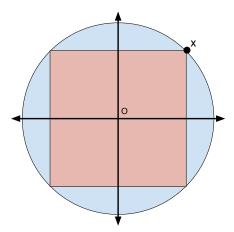
Geometry and its relationship to iteration count

ullet Can find an approximate max flow in $ilde{O}(\sqrt{m}\mathrm{poly}(1/\epsilon))$ iterations



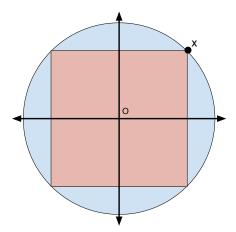
Geometry and its relationship to iteration count

- Can find an approximate max flow in $\tilde{O}(\sqrt{m}\operatorname{poly}(1/\epsilon))$ iterations
- \sqrt{m} comes from gap between ℓ_2 and ℓ_∞ norm in \mathbb{R}^m

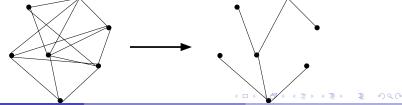


Geometry and its relationship to iteration count

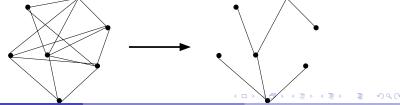
- Can find an approximate max flow in $\tilde{O}(\sqrt{m}\mathrm{poly}(1/\epsilon))$ iterations
- \sqrt{m} comes from gap between ℓ_2 and ℓ_∞ norm in \mathbb{R}^m
- ullet $ilde{O}(m)$ time per iteration o $ilde{O}(m^{3/2}\mathsf{poly}(1/\epsilon))$ time



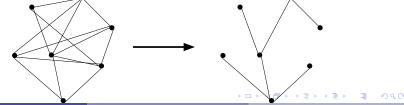
 Embed graph into a simpler graph while preserving cuts/distances



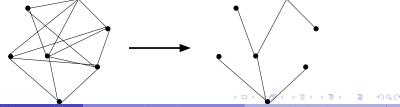
- Embed graph into a simpler graph while preserving cuts/distances
- Simplest possible graph: a tree



- Embed graph into a simpler graph while preserving cuts/distances
- Simplest possible graph: a tree
- Unfortunately, can't do well with a single tree, but can do well with a distribution over trees!



- Embed graph into a simpler graph while preserving cuts/distances
- Simplest possible graph: a tree
- Unfortunately, can't do well with a single tree, but can do well with a distribution over trees!
- Related embedding technique can be used to find an $m^{o(1)}$ -approximate ℓ_{∞} projection, which yields an $(1+\epsilon)$ -approximate max flow in $O(m \operatorname{polylog}(n)/\epsilon)$ time [KLOS14, She13, She17, Pen16]



Summary

- Graph partitioning (diameter v.s. cutsize)
- Writing flow problems as norm minimization
- Graph embedding

Bibliography

Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs. CoRR, abs/1010.2921, 2010.

Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford.

An almost-linear-time algorithm for approximate max flow in undirected graphs, and its multicommodity generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 217–226, 2014.

Frank Thomson Leighton and Satish Rao.

Multicommodity max-flow min-cut theorems and their use in